Kalman滤波是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。算法优点在于计算量小,能够利用前一时刻的状态或可能的测量值来得到当前时刻下状态的最优估计。观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是一种滤波过程。
常见模型多为python代码形式或者matlab/simulink中的S函数形式,代码形式无法呈现模块化功能,不适用于建模撰写文章Paper报告等。下文介绍的Simulink模型为模块化建模:
下载地址请点击右侧:【Kalman-Simulink模型】
Kalman技术在实际应用价值通常体现在两个方面:卡尔曼滤波器和卡尔曼状态观测器。