A*(A star)寻路之分布式堆栈下发(二)

本文深入探讨了A*寻路算法在Unity中的应用,包括算法原理、实现细节和估价函数的探讨。通过实例分析,展示了A*如何利用F=G+H评估节点,以及开放列表和封闭列表在搜索过程中的作用。文章还提到了不同的H值计算方法,如曼哈顿、对角线和欧几里得等,并提供了算法流程图和代码实现示例。
摘要由CSDN通过智能技术生成

紧接上一篇《Unity NavMesh寻路 & A* (A star)分析及实例应用(一)》,本文重点讲解A* 算法在Unity中的寻路实现(当然寻路算法不止 A* 这一种, 还有递归, 非递归, 广度优先, 深度优先, 使用堆栈等等, 有兴趣的可以研究研究~~),文尾会将本人GitHub上的实例Demo共享出来方便大家参考,有精力深挖的同学可以根据下文继续探索:http://www.redblobgames.com/pathfinding/a-star/introduction.html

原理:
AStar 使用 F = G + H 来评估一个节点。其中 G 代表起始节点到这个节点的代价,H 代表目的节点到这个节点的代价。这样,从起始节点开始,不断的寻找邻居节点中 F 最小的,直到检测到目的节点从而找到路径为止。
A*算法(A-star)其实是一种启发式搜索或者说成是在状态空间中的搜索,首先对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直到目标。这样可以省略大量无谓的搜索路径,提高了效率。在启发式搜索中,对位置的估价是十分重要的。采用了不同的估价可以有不同的效果。
启发中的估价是用估价函数表示的,如:f(n) = g(n) + h(n)
其中f(n) 是节点n的估价函数,g(n)是在状态空间中从初始节点到n节点的实际代价,h(n)是从n到目标节点最佳路径的估计代价。在这里主要是h(n)体现了搜索的启发信息,因为g(n)是已知的。如果说详细点,g(n)代表了搜索的广度的优先趋势。但是当h(n) >> g(n)时,可以省略g(n),而提高效率
这里有公式f

最终路径长度f = 起点到该点的已知长度h + 该点到终点的估计长度g。

     O表(open):

            待处理的节点表。

     C表(close):

            已处理过的节点表。

下面是算法流程图:

流程图

AStar 维护着一个开放列表和一个封闭列表。开放列表中存放着待检查 F 值的节点,每次主循环中都从 openList 中寻找 F 值最小的节点作为当前节点,然后将当前节点的邻居节点加入到 openList 中作为待检查节点。封闭列表存放着不再检查的节点,每当选出一个当前节点之后意味着它的邻居节点将要或已经加入到开放列表中,这个当前节点便成为了一个不再检查的节点,所以要把它加入到 closeList 中,防止再次检查。
在邻居节点循环中如果这个邻居节点不在 openList 中,那就需要设置 F、G、H 和 parentNode 并加入到 openList 中备选。
在邻居节点循环中如果这个节点已经在 openList 中,说明它之前已经作为邻居节点加入到了 openList 中,但是没有被选为当前节点(因为它的 F 不是最小的)。而此时它又成为了另一个节点的邻居节点,如果经由当前节点到这个节点的 F 值变小了那就更新这个邻居节点的数据,否则什么也不做。
openList 为空说明搜索了所有地图而没有找到路径。
当前节点为目的节点说明路径已经找到,沿着当前节点的 parentNode 回溯就可以得到路径数据。

G 和 H
AStar 依据 G 和 H 值来评估一个节点在本次寻路过程中的代价。
这两个值将经由这个节点的路径的代价分割成两部分:
一部分是由起始节点到这个节点的代价 G ,因为路径的搜索过程是从起始节点开始循环的检查当前节点的每个邻居节点,所以这个值是确定的。
另一部分 F 是这个节点到目的节点的代价,这个值一般是一个估计值(也可以是精确的)。这样,因为有 H 值影响着 F 的大小,路径的搜索会有一个大概的方向,即 H 值会不断的把搜索方向导向目的节点的方向,这也是为什么 AStar 会更快,因为 H 值减少了算法检查的节点个数。

下面用几张截图来说明这两个值的作用。如下图,现在有这样一个地图,先不考虑地图中有其它山啊水啊不可达的区域,假设地图上任何一个节点都是可达的,现在要在两个圆点标记的节点中寻找一条路径。

屏幕快照 2016-02-19 22.09.32.png

首先是使用了“曼哈顿”方法计算 H 值的 AStar 结果,图中蓝色的节点是算法过程中被加入到了 openList 中的节点,可以看到这个搜索过程没有检查过多的节点,从一开始就向着目的节点的方向搜索过去。

下面,把每个 H 值的节点都置 0,也就是说完全消除 H 值对算法的影响,根据原理大概可以预测到搜索过程会以起始节点为圆心,不断的向外扩展,直到到达了目的节点为止。下面是截图:

G 让算法找到更好的路径,而 H 让算法更快的找到路径。
G 和 H 的单位问题
因为 F 是由 G 和 H 相加得来的,所以二者的度量应该是统一的。如果二者的度量不统一就会使二者中的一个值在节点评估中起主导作用,而另一个值变得失效了。比如再看使用了“曼哈顿”方法计算 H 值的 AStar ,这次把 H 值缩小十倍,算法检查了更多的节点,从而速度会变慢。

计算 H 的几种常用方法
精确的 H 值
可以在路径搜索之前预先计算任意两个节点之间的代价,然后在计算 H

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农老K

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>