斯坦福 机器学习Andrew NG 第一讲 Linear regression with one variable

 Linear regression with one variable  单参数线性回归

1.Model representation

引例:一个房屋尺寸与对应定价的数据集,其中记为房屋尺寸,为房屋售价(x,y)为一个训练数据。另外m为训练数据集训练数据的数量,i为第i个数据集的索引,当做第i个数据的上标,Eg:

 

训练数据集在坐标轴中表示如下:


 

线性规划问题流程图:


 

But ,how do we represent h ?

2.Cost function

对于单因子线性规划通常令


 

对于不同的,得到的结果是不同的。Eg


但是,对于一个问题我们要怎么得到合适的呢?


其中:


 

只考虑一个时(假设)对于简化的,当分别为1,0.5,0时:


 

 

 

时:


 

得到的如下图所示:


 

用等高线表示如下图:


 

3.Gradient descent

如何得到使取得最小值?


 

设定一个初始的,得到一个,然后不断变换,直到得到的的值最小,即为我们要求的结果。诚然根据这种思路,求的方法很多(在不考虑效率的情况下,仅通过循环遍历即可得到使最小的)。但是考虑到算法的时间复杂度,梯度下降算法是一种较快速的算法。

 

 

 

 

其中:

     为学习率

     为梯度

下图为当梯度大于0和小于0时算法的工作情况。

 

应该如何更新?

 

应如何取值?

太小,则运算速度太慢,收敛需要的时间太长。

太大,则可能不收敛或发散。


合适的情况下,即使是一个定值,梯度下降依然可以收敛到一个局部最小值。(因为梯度在逐渐变小)。

 

由上面两张图片可以得到:

 



课程资源

Coursera :https://class.coursera.org/ml-005/lecture

百度云盘:http://pan.baidu.com/s/1skBO

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值