Linear regression with one variable 单参数线性回归
1.Model representation
引例:一个房屋尺寸与对应定价的数据集,其中记x 为房屋尺寸,y 为房屋售价(x,y)为一个训练数据。另外m为训练数据集训练数据的数量,i为第i个数据集的索引,当做第i个数据的上标,Eg:。
训练数据集在坐标轴中表示如下:
线性规划问题流程图:
But ,how do we represent h ?
2.Cost function
对于单因子线性规划通常令
对于不同的,得到的结果是不同的。Eg:
但是,对于一个问题我们要怎么得到合适的呢?
其中:
只考虑一个时(假设)对于简化的,当分别为1,0.5,0时:
当时:
得到的如下图所示:
用等高线表示如下图:
3.Gradient descent
如何得到使取得最小值?
设定一个初始的,得到一个,然后不断变换,直到得到的的值最小,即为我们要求的结果。诚然根据这种思路,求的方法很多(在不考虑效率的情况下,仅通过循环遍历即可得到使最小的)。但是考虑到算法的时间复杂度,梯度下降算法是一种较快速的算法。
其中:
为学习率
为梯度
下图为当梯度大于0和小于0时算法的工作情况。
应该如何更新?
应如何取值?
若太小,则运算速度太慢,收敛需要的时间太长。
若太大,则可能不收敛或发散。
在合适的情况下,即使是一个定值,梯度下降依然可以收敛到一个局部最小值。(因为梯度在逐渐变小)。
由上面两张图片可以得到:
课程资源