Gamma分布【转】

原文地址:Gamma分布【转】 作者:三寅

Γ函数

维基百科,自由的百科全书
跳转到: 导航, 搜索

跳过字词转换说明

 

微积分学
e = lim_{ntoinfty} left(1+frac{1}{n}right)^n
函数 · 导数 · 微分 · 积分
显示▼隐藏▲基础概念
函数 · 数列 · 级数 · 初等函数 · 极限 · 无穷小量 · 收敛数列 · 收敛性 · 夹挤定理 · 连续 · 一致连续 · 间断点
显示▼隐藏▲一元微分
导数 · 不定积分 · 高阶导数 · 介值定理 · 中值定理 · 泰勒公式 · 求导法则 ( 乘法定则 · 除法定则 · 倒数定则 · 链式法则 ) · 洛必达法则 · 导数列表 · 导数的函数应用 ( 单调性 · 极值 · 驻点 · 拐点 · 凹凸性 · 曲率 )
显示▼隐藏▲一元积分
积分的定义 ( 黎曼积分 · 达布积分 · 勒贝格积分 ) · 积分表 · 求积分的技巧 ( 换元积分法 · 分部积分法 · 三角换元法 · 降次积分法 · 部分分式积分法 ) · 定积分 · 牛顿-莱布尼茨公式 · 广义积分 · 主值 · 柯西主值 · β函数 · Γ函数 · 数值积分 · 牛顿-寇次公式 · 近似积分法 ( 矩形法 · 梯形法 · 辛普森积分法 )
显示▼隐藏▲多元微积分
多元函数 · 偏导数 · 隐函数 · 全微分 · 方向导数 · 梯度 · 泰勒公式 · 拉格朗日乘数 · 多元函数积分 · 多重积分 · 广义多重积分 · 路径积分 · 曲面积分 · 格林公式 · 高斯公式 · 斯托克斯公式 · 散度 · 旋度
显示▼隐藏▲微分方程
常微分方程 · 分离变数法 · 积分因子 · 欧拉方法 · 柯西-欧拉方程 · 伯努利微分方程 · 克莱罗方程 · 全微分方程 · 线性微分方程 · 差分方程 · 拉普拉斯变换法 · 偏微分方程 · 拉普拉斯方程
显示▼隐藏▲数学家
牛顿 · 莱布尼兹 · 柯西 · 黎曼 · 拉格朗日 · 拉普拉斯
本模板: 查看    讨论    编辑    历史

Gamma ,函数,也叫做伽玛函数(Gamma函数),是阶乘函数在实数与复数上的扩展。对于实数部份为正的复数z,伽玛函数定义为:

 Gamma(z) = int_{0}^{infty} frac{t^{z-1}}{e^t} ,{rm{d}}t

此定义可以用解析开拓原理拓展到整个复数域上,非正整数除外。

如果n为正整数,则伽玛函数定义为:

Γ(n) = (n − 1)!,

这显示了它与阶乘函数的联系。可见,伽玛函数将n拓展到了实数与复数域上。

概率论中常见此函数,在组合数学中也常见。

定义

Gamma ,函数可以通过欧拉(Euler)第二类积分定义:

Gamma(z)=int_{0}^{infty}frac{t^{z-1}}{e^t}rm{d}t

对复数z,,我们要求Re(z) > 0。

Γ函数还可以通过对e^{-t},做泰勒展开,解析延拓到整个复平面: Gamma(z)=int_{1}^{infty}frac{t^{z-1}}{e^t}{rm{d}}t+sum_{n=0}^{infty}frac{(-1)^n}{n!}frac{1}{n+z}

这样定义的Γ函数在全平面除了z=0,-1,-2,ldots以外的地方解析。

Γ函数也可以用无穷乘积的方式表示:

Gamma(z)=frac{1}{z}prod_{n=1}^{infty} left{left(1+frac{z}{n}right)^{-1}left(1+frac{1}{n}right)^z right}

这样定义的Γ函数在全平面解析

无穷乘积

Gamma,函数可以用无穷乘积表示:

Gamma(z) = lim_{n to {+infty}} frac{n! ; n^z}{z ; (z+1)cdots(z+n)}
Gamma(z) = frac{e^{-gamma z}}{z} prod_{n=1}^{+infty} left(1 + frac{z}{n}right)^{-1} e^{frac{z}{n}}

其中gamma,欧拉-马歇罗尼常数

Gamma积分

1= int_{0}^{infty}frac{x^left(alpha-1right)lambda^alpha e^left(-lambda xright)}{Gammaleft(alpha right)} {rm{d}} x

Rightarrow frac{Gammaleft(alpharight)}{lambda^alpha} = int_{0}^{infty} x^{alpha-1}e^{-lambda x} {rm{d}}x

递推公式

 Gamma ,函数的递推公式为: Γ(x + 1) = xΓ(x),

对于正整数n,,有

Γ(n + 1) = n!,

可以说 Gamma ,函数是阶乘的推广。

递推公式的推导

Gamma(n + 1) = int_0^infty e^{-x} x ^{n + 1 - 1} dx = int_0^infty e^{-x} x ^n {rm{d}}x

我们用分部积分法来计算这个积分:

int_0^infty e^{-x} x ^n dx = left[frac{-x^n}{e^x}right]_0^infty + n int_0^infty e^{-x} x ^{n - 1} {rm{d}} x

x=0 ,时,frac{-0^n}{e^0} = frac{0}{1} = 0。当x ,趋于无穷大时,根据洛必达法则,有:

lim_{x rightarrow infty} frac{-x^n}{e^x} = lim_{x rightarrow infty} frac{-n! cdot 0}{e^x} = 0.

因此第一项left[frac{-x^n}{e^x}right]_0^infty 变成了零,所以:

Gamma(n + 1) = n int_0^infty frac{x ^{n - 1}}{e^x} {rm{d}}x

等式的右面正好是n Gamma(n),。因此,递推公式为:

{Gamma(n + 1) = n Gamma(n)} ,

重要性质

Γ函数在实轴上的函数图形
  • zto 0^+时,Gamma(z)to+infty
  • 欧拉反射公式:
Gamma(z)Gamma(1-z)=frac{pi}{sin{pi z}} quad (0<mathrm{Re}(z)<1)
由此可知当  z=frac{1}{2}时, Gamma(frac12)=sqrt{pi}
  • 乘法定理:
Gamma(z) ; Gammaleft(z + frac{1}{2}right) = 2^{1-2z} ; sqrt{pi} ; Gamma(2z)
Gamma(z) ; Gammaleft(z + frac{1}{m}right) ; Gammaleft(z + frac{2}{m}right) cdots Gammaleft(z + frac{m-1}{m}right) = (2 pi)^{frac{m-1}{2}} ; m^{frac{1}{2} - mz} ; Gamma(mz)
  • 补充:

Gammaleft(n+frac{1}{2}right)=frac{(2n)!sqrt{pi}}{n!4^n} 此式可用来协助计算t分布机率密度函数、卡方分布机率密度函数、F ,分布机率密度函数等的累计机率。

特殊值

begin{array}{lll} Gamma(-frac{3}{2}) &=frac {4}{3}sqrt{pi}&approx 2.363  Gamma(-frac{1}{2}) &=-2sqrt{pi} &approx -3.545  Gamma(frac{1}{2}) &=sqrt{pi} &approx 1.772  Gamma(1)&=0!&=1 Gamma(frac{3}{2}) &=frac{sqrt{pi}}{2} &approx 0.886  Gamma(2)&=1!&=1 Gamma(frac{5}{2}) &=frac{3sqrt{pi}}{4} &approx 1.329  Gamma(3)&=2!&=2 Gamma(frac{7}{2}) &=frac{15}{8}sqrt{pi} &approx 3.323  Gamma(frac{9}{2}) &=frac{105sqrt{pi}}{16} &approx 11.6305  end{array}

导数

frac{partial}{partial z}Gamma(z) = int_{0}^{infty} frac{t^{z-1}ln t}{e^t},{rm{d}}t

复数值

Gamma(x+{rm{i}}y)=int_1^{infty}frac{t^{x-1}}{e^t}cos (yln t){rm{d}}t+sum_{k=0}^{infty}frac{(-1)^k}{k!}left[frac{k}{(k+x)^2+y^2}+frac{x}{(k+x)^2+y^2}right]+{rm{i}}left{int_1^{infty}frac{t^{x-1}}{e^t}sin (yln t){rm{d}}t-ysum_{k=0}^{infty}frac{(-1)^k}{k![(k+x)^2+y^2]}right},

斯特灵公式

斯特灵公式能用以估计Γ函数的增长速度。

解析延拓

Γ函数的绝对值函数图形

注意到在Γ函数的积分定义中若取z ,为实部大于零之复数、则积分存在,而且在右半复平面上定义一个全纯函数。利用函数方程

Gamma(z)Gamma(1-z)=frac{pi}{sin{pi z}} quad (0 < mathrm{Re}(z) < 1)

并注意到函数sin (pi z) ,在整个复平面上有解析延拓,我们可以在Re(z) < 1时设

 Gamma(z) = dfrac{pi}{Gamma(1-z) sin{pi z}}

从而将Gamma ,函数延拓为整个复平面上的亚纯函数,它在z=0,-1,-2,-3cdots有单极点,留数为

mathrm{Res}(Gamma, -n) = dfrac{(-1)^n}{n!}

http://blog.sina.com.cn/s/blog_50151e570100ku28.html

 

伽玛分布

 

伽玛分布Gamma distribution)是統計學的一種連續機率函數Gamma分佈中的參數α,稱為形狀參數shape parameter),β稱為尺度參數scale parameter)。

 實驗定義與觀念

假設隨機變數X為 等到第α件事發生所需之等候時間

 機率函數

X˜Γ(α,β);且令[转载]Gamma分布【转】: (即[转载]Gamma分布【转】)。

[转载]Gamma分布【转】0

其中Gamma函数之特徵

[转载]Gamma分布【转】

 Gamma積分

[转载]Gamma分布【转】

[转载]Gamma分布【转】

 動差母函數機率生成函數期望值、變異數

Gamma分配之動差母函數m.g.f

[转载]Gamma分布【转】

機率生成函數 p.g.f

[转载]Gamma分布【转】

期望值

[转载]Gamma分布【转】

方差

[转载]Gamma分布【转】

 Gamma的加成性

當兩隨機變數服從Gamma分配,互相獨立,且單位時間內頻率相同時,Gamma分配具有加成性。

[转载]Gamma分布【转】

Gamma分布

Gamma概率密度函數

累積分佈函數

參數

[转载]Gamma分布【转】shape(real)
[转载]Gamma分布【转】scale(real)

支撑集

[转载]Gamma分布【转】

概率密度函數

[转载]Gamma分布【转】

累積分佈函數

[转载]Gamma分布【转】

期望值

[转载]Gamma分布【转】

中位數

no simple closed form

眾數

[转载]Gamma分布【转】for [转载]Gamma分布【转】

方差

[转载]Gamma分布【转】

偏度

[转载]Gamma分布【转】

峰度

[转载]Gamma分布【转】

信息熵

[转载]Gamma分布【转】
[转载]Gamma分布【转】

動差生成函數

[转载]Gamma分布【转】for [转载]Gamma分布【转】

特性函数

[转载]Gamma分布【转】

 

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值