计算机视觉CV-Pytorch 基于Cifar10的图像分类入门学习
图像分类小目标
- 数据预处理、加载
- 模型训练、调参
- 模型保存、加载
我们通过Pytorch来训练一个小分类模型,展示建立分类器的具体步骤:
1 数据预处理、加载
AI数据主要包括:文本、图像、音频、视频数据,这些数据可使用标准Python数据包加载,放到一个numpy数组,讲数组转换为torch.* Tensor。其中:
-
图像数据,常用OpenCV,Pillow包
-
音频数据,常用scipy,librosa包
-
文本数据,常用NLTK, SpaCy包
Pytorch包涵盖常用数据集,可通过torchvision.datasets读取,并使用torchvision加载并预处理CIFAR-10数据集。具体可参考:Pytorch数据读取方法简介
本文使用Cifar10数据集,包含10类,分别为: ‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’。图像大小均为32x32x3。
import torch
import torchvision
import torchvision.transforms as transforms
# 转化为Tensor,将元素转化为0-1的数字,Normalize将其归一化。
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
# 训练集需要训练
trainset = torchvision.datasets.CIFAR10('../../../dataset', train=True,transform=None, target_transform=None, download=True)
# batch_size设置了批量大小,shuffle设置为True在装载过程中为随机乱序,num_workers>=1表示多线程读取数据。
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,shuffle=True, num_workers=2)
# 测试集不需要训练
testset = torchvision.datasets.CIFAR10('../../../dataset',train=False,transform=None, target_transform=None, download=True)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,shuffle=False, num_workers=2)
# 指定类别标签
classes = ('plane', 'car', 'bird', 'cat','deer', 'dog', 'frog', 'horse', 'ship', 'truck')
可查看图像
import matplotlib.pyplot as plt
import numpy as np
def imgshow(img):
img = img /<