【MATLAB】 CEEMD信号分解+FFT傅里叶频谱变换组合算法

本文介绍了CEEMD信号分解算法,它是EEMD的一种改进,用于解决模态混叠问题。同时,文章概述了FFT傅里叶频谱变换的基本原理及其在信号处理中的应用。最后,提供了MATLAB中CEEMD和FFT的组合操作教程及资源链接。
摘要由CSDN通过智能技术生成

有意向获取代码,请转文末观看代码获取方式~

展示出图效果

1 CEEMD信号分解算法

CEEMD 分解又叫互补集合经验模态分解,英文全称为 Complementary Ensemble Empirical Mode Decomposition。

CEEMD是对EEMD的改进,它在EEMD的基础上引入了一个自适应的扩展方法,可以更好地解决EMD/EEMD中存在的模态混叠问题。CEEMD的主要步骤如下:

  1. 对原始信号进行若干次随机噪声扰动,得到多个噪声扰动数据集。

  2. 对每个噪声扰动数据集进行EMD分解,得到多个EMD分解集合。

  3. 对于每个EMD分解集合,通过一个自适应的扩展方法,将每个局部模态函数分配到它所属的固有模态函数上,消除模态混叠的影响。

  4. 将每个扩展后的 EMD 分解集合的对应分量进行平均,得到最终的 CEEMD 分解结果。 CEEMD 分解具有良好的局部性和自适应性,能够更准确地分解信号,同时避免了 EEMD 中的模态混叠问题。因此,CEEMD 在信号处理、图像处理和模式识别等领域也得到了广泛的应用。

要想在 MATLAB 中使用 EMD 分解首先要安装 EMD 分解的 MATLAB 工具包。

关于简短的代码视频教程均可关注B站、小红书、知乎同名账号(Lwcah)观看教程~

EMD 工具包的安装:在 MATLAB 打开 package_emd 文件夹,运行 install_emd. M 以及 index_emd. M 两个函数如下图所示即可完成工具包的安装。

MATLAB 信号分解第三期-CEEMD:

信号分解全家桶详情请参见:

2 FFT傅里叶频谱变换算法

傅里叶变换是一种数学方法,用于将一个信号分解成一系列正弦和余弦函数的和,从而更好地理解和处理信号。傅里叶变换在信号处理领域有着广泛的应用,包括音频处理、图像处理等。 具体来说,傅里叶变换的步骤如下:

  1. 给定一个连续时间域函数f(t),其中t为时间。

  2. 对f(t)进行傅里叶变换,得到它的频率域表示F(ω),其中ω为角频率。

  3. F(ω)表示了f(t)中所有频率分量的幅度和相位信息。

  4. 将F(ω)分解成一系列正弦和余弦函数的和,即: F(ω) = ∑[a(k)cos(kω) + b(k)sin(kω)] 其中,k为频率分量的序号,a(k)和b(k)分别为对应的正弦和余弦函数的系数。 傅里叶变换的优点是可以将时间域中的信号转换成频率域中的信号,从而更好地理解信号的频率分量和周期性特征,同时也方便进行一些信号处理任务,例如滤波、降噪等。缺点是傅里叶变换需要对整个信号进行处理,计算量较大,在实时处理等场景下可能会存在较大的延迟。

MATLAB | 频谱分析算法 | 傅里叶变换 开源 MATLAB 代码请转:

MATLAB | 9种频谱分析算法全家桶详情请参见:

3 CEEMD信号分解+FFT傅里叶频谱变换组合算法

如下为简短的视频操作教程。

【MATLAB 】 CEEMD信号分解+FFT傅里叶频谱变换组合算法请转:

【MATLAB 】信号分解+FFT傅里叶频谱变换组合算法全家桶详情请参见:

关于代码有任何疑问,可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~


代码见附件

CEEMD(Complete Ensemble Empirical Mode Decomposition)是一种在信号处理中常用的方法,用于将非平稳信号进行分解。该方法在Matlab中有很好的支持。 CEEMD分解的核心思想是将非平稳信号分解为多个本征模态函数(EMD)的叠加。EMD是将原始信号分解为一组本征模态函数和一个剩余项的方法。而CEEMD是对EMD方法进行了改进,通过构建多个随机扰动信号的集合来减小分解结果的模态数量,并取平均值来减小噪声的影响。 在Matlab中,可以通过以下步骤进行CEEMD分解: 1. 准备原始信号数据。将需要分解的非平稳信号导入Matlab工作环境中,可以使用Matlab内置的读取数据函数或者手动输入数据。 2. 导入CEEMD分解的相关工具包。需要从Matlab的官方网站下载并安装CEEMD工具包,将其添加到Matlab的工作路径中。 3. 调用CEEMD分解函数。使用Matlab中的CEEMD函数,输入原始信号数据并设置其他参数,如模态数量、随机扰动集合数量等。 4. 获取分解结果。CEEMD函数将返回一组本征模态函数和一个剩余项。可以通过Matlab的绘图函数将分解结果可视化显示出来。 5. 分析和处理分解结果。根据需要,可以对分解得到的每个本征模态函数进行进一步的分析和处理,如频率分析、滤波等。 6. 重建信号。可以通过将各个本征模态函数相加再加上剩余项,来重建原始信号。 总的来说,通过在Matlab中使用CEEMD方法进行信号分解,可以有效地提取出非平稳信号中的各个模态分量,并进行进一步的分析和处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lwcah(全网各平台账号同名)

您的鼓励是我创作的最大的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值