简介
下面一个例子介绍了向量加法的OpenCL版,相当于学习C语言中的“Hello World”,本篇教程中的代码以及其余相关教程都可以通过OLCF github下载
vecAdd.c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <CL/opencl.h>
// OpenCL kernel. Each work item takes care of one element of c
const char *kernelSource = "\n" \
"#pragma OPENCL EXTENSION cl_khr_fp64 : enable \n" \
"__kernel void vecAdd( __global double *a, \n" \
" __global double *b, \n" \
" __global double *c, \n" \
" const unsigned int n) \n" \
"{ \n" \
" //Get our global thread ID \n" \
" int id = get_global_id(0); \n" \
" \n" \
" //Make sure we do not go out of bounds \n" \
" if (id < n) \n" \
" c[id] = a[id] + b[id]; \n" \
"} \n" \
"\n" ;
int main( int argc, char* argv[] )
{
// Length of vectors
unsigned int n = 100000;
// Host input vectors
double *h_a;
double *h_b;
// Host output vector
double *h_c;
// Device input buffers
cl_mem d_a;
cl_mem d_b;
// Device output buffer
cl_mem d_c;
cl_platform_id cpPlatform; // OpenCL platform
cl_device_id device_id; // device ID
cl_context context; // context
cl_command_queue queue; // command queue
cl_program program; // program
cl_kernel kernel; // kernel
// Size, in bytes, of each vector
size_t bytes = n*sizeof(double);
// Allocate memory for each vector on host
h_a = (double*)malloc(bytes);
h_b = (double*)malloc(bytes);
h_c = (double*)malloc(bytes);
// Initialize vectors on host
int i;
for( i = 0; i < n; i++ )
{
h_a[i] = sinf(i)*sinf(i);
h_b[i] = cosf(i)*cosf(i);
}
size_t globalSize, localSize;
cl_int err;
// Number of work items in each local work group
localSize = 64;
// Number of total work items - localSize must be devisor
globalSize = ceil(n/(float)localSize)*localSize;
// Bind to platform
err = clGetPlatformIDs(1, &cpPlatform, NULL);
// Get ID for the device
err = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 1, &device_id, NULL);
// Create a context
context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);
// Create a command queue
queue = clCreateCommandQueue(context, device_id, 0, &err);
// Create the compute program from the source buffer
program = clCreateProgramWithSource(context, 1,
(const char **) & kernelSource, NULL, &err);
// Build the program executable
clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
// Create the compute kernel in the program we wish to run
kernel = clCreateKernel(program, "vecAdd", &err);
// Create the input and output arrays in device memory for our calculation
d_a = clCreateBuffer(context, CL_MEM_READ_ONLY, bytes, NULL, NULL);
d_b = clCreateBuffer(context, CL_MEM_READ_ONLY, bytes, NULL, NULL);
d_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY, bytes, NULL, NULL);
// Write our data set into the input array in device memory
err = clEnqueueWriteBuffer(queue, d_a, CL_TRUE, 0,
bytes, h_a, 0, NULL, NULL);
err |= clEnqueueWriteBuffer(queue, d_b, CL_TRUE, 0,
bytes, h_b, 0, NULL, NULL);
// Set the arguments to our compute kernel
err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_a);
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_b);
err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &d_c);
err |= clSetKernelArg(kernel, 3, sizeof(unsigned int), &n);
// Execute the kernel over the entire range of the data set
err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &globalSize, &localSize,
0, NULL, NULL);
// Wait for the command queue to get serviced before reading back results
clFinish(queue);
// Read the results from the device
clEnqueueReadBuffer(queue, d_c, CL_TRUE, 0,
bytes, h_c, 0, NULL, NULL );
//Sum up vector c and print result divided by n, this should equal 1 within error
double sum = 0;
for(i=0; i<n; i++)
sum += h_c[i];
printf("final result: %f\n", sum/n);
// release OpenCL resources
clReleaseMemObject(d_a);
clReleaseMemObject(d_b);
clReleaseMemObject(d_c);
clReleaseProgram(program);
clReleaseKernel(kernel);
clReleaseCommandQueue(queue);
clReleaseContext(context);
//release host memory
free(h_a);
free(h_b);
free(h_c);
return 0;
}
代码分析
内核(kernel):
kernel是OpenCL代码的核心部分,整个内核必须通过C字符串的形式读入,最简单的办法是像代码一样定义一个长长的字符串,在真实的项目代码中通常都会从单独的文件中读入内核。
// OpenCL kernel. Each work item takes care of one element of c
const char *kernelSource = "\n" \
"#pragma OPENCL EXTENSION cl_khr_fp64 : enable \n" \
"__kernel void vecAdd( __global double *a, \n" \
" __global double *b, \n" \
" __global double *c, \n" \
" const unsigned int n) \n" \
"{ \n" \
" //Get our global thread ID \n" \
" int id = get_global_id(0); \n" \
" \n" \
" //Make sure we do not go out of bounds \n" \
" if (id < n) \n" \
" c[id] = a[id] + b[id]; \n" \
"} \n" \
"\n" ;
下面是内核的函数声明:
__kernel
void
vecAdd( __global
double
*a, __global
double
*b,
__global
double
*c,
const
unsigned
int
n)
|
__kernel是一个定义OpenCL内核的关键字,__global则定义函数指针指向全局设备内存空间,否则可以使用一般的C语言函数声明语法。内核的返回值必须为空void
int
id = get_global_id(0);
|
通过get_global_id函数可以获得当前工作单元(work item)的全局id,参数为0表示获取X维上的ID。
if
(id < n)
c[id] = a[id] + b[id];
|
工作组(work group)的个数必定是整数,由于工作组的大小不一定是需要的线程数的整数倍,因此通常使用的线程数比需要的线程数要多,在程序设计时可以将无用的线程简单丢弃掉。
内存(Memory)
// Host input vectors
double *h_a;
double *h_b;
// Host output vector
double *h_c;
// Device input buffers
cl_mem d_a;
cl_mem d_b;
// Device output buffer
cl_mem d_c;
主机CPU和GPU有不同的内存空间,因此需要分别定义,上面的代码中前半部分定义主机(host)CPU的内存指针,后半部分定义设备(device)内存的handle,分别用h_和d_前缀来区分。
线程映射(Thread Mapping)
// Number of work items in each local work group
localSize = 64;
// Number of total work items - localSize must be devisor
globalSize = ceil(n/(float)localSize)*localSize;
为了将我们要解决的问题映射到底层硬件结构,必须定义局部尺寸(local size)和全局尺寸(global size)。局部尺寸定义了每个工作组中的工作单元数,在NVIDIA GPU上等价于每个线程块(thread block)中的线程数。全局尺寸定义了工作单元的总数目。局部尺寸必须是全局尺寸的倍数。
OpenCL前期准备(setup)
// Bind to platform
err = clGetPlatformIDs(1, &cpPlatform, NULL);
每个硬件厂商都会绑定一个不同的平台(platform),在这里clGetPlatformIDs会将cpPlatform设置成包含系统可用平台的变量。举个例子,如果一个系统包含AMD CPU以及NVIDIA GPU,并且安装了恰当的OpenCL驱动,那么两个OpenCL平台会被返回。
// Get ID for the device
err = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 1, &device_id, NULL);
可以询问每一个平台都包含哪些设备,在这里我们通过使用CL_DEVICE_TYPE_GPU来查询GPU设备。
// Create a context
context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);
在使用OpenCL设备之前,必须先准备一个上下文(context),上下文对象用来管理命令队列(command queue)、内存(memory)、内核操作(Kernel activity),一个上下文对象可一般含多个设备。
// Create a command queue
queue = clCreateCommandQueue(context, device_id, 0, &err);
命令队列(command queue)用来流式地将命令从主机送到指定的设备,可以把数据传输和内核操作命令放到命令队列上,当条件适宜的时候命令就会被执行。
编译内核(Compile Kernel)
program = clCreateProgramWithSource(context, 1,
(const char **) & kernelSource, NULL, &err);
// Build the program executable
clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
// Create the compute kernel in the program we wish to run
kernel = clCreateKernel(program, "vecAdd", &err);
为了保证OpenCL代码可以移植到许多不同的设备上,运行kernel的默认方式是JIT(Just-in-time, 实时编译)。首先创建一个program对象(包含一系列内核代码),然后再创建一系列的内核。
准备数据(prepare data)
// Create the input and output arrays in device memory for our calculation
d_a = clCreateBuffer(context, CL_MEM_READ_ONLY, bytes, NULL, NULL);
d_b = clCreateBuffer(context, CL_MEM_READ_ONLY, bytes, NULL, NULL);
d_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY, bytes, NULL, NULL);
// Write our data set into the input array in device memory
err = clEnqueueWriteBuffer(queue, d_a, CL_TRUE, 0,
bytes, h_a, 0, NULL, NULL);
err |= clEnqueueWriteBuffer(queue, d_b, CL_TRUE, 0,
bytes, h_b, 0, NULL, NULL);
// Set the arguments to our compute kernel
err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_a);
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_b);
err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &d_c);
err |= clSetKernelArg(kernel, 3, sizeof(unsigned int), &n);
在启动内核之前,我们必须创建主机和设备之间的缓存(buffer),并将主机数据(host data)和这些新创建的设备缓存想绑定,最后再设定内核参数。
启动内核(Launch Kernel)
// Execute the kernel over the entire range of the data set
err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &globalSize, &localSize,
0, NULL, NULL);
将结果拷贝回主机(Copy results to host)
// Wait for the command queue to get serviced before reading back results
clFinish(queue);
// Read the results from the device
clEnqueueReadBuffer(queue, d_c, CL_TRUE, 0,
bytes, h_c, 0, NULL, NULL );
我们可以阻塞程序直到命令队列变为空,然后把结果拷贝回主机。
编译(Compile)
$ module load cudatoolkit
$ cc -lOpenCL vecAdd.c -o vecAdd.out
运行(Running)
$ aprun ./vecAdd.out
final result: 1.000000
VecAdd.cc
C++绑定在OpenCL的开发中非常常用,它比标准C接口更为流畅,下面是一个使用这些绑定的例子。
#define __CL_ENABLE_EXCEPTIONS
#include "cl.hpp"
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <math.h>
// OpenCL kernel. Each work item takes care of one element of c
const char *kernelSource = "\n" \
"#pragma OPENCL EXTENSION cl_khr_fp64 : enable \n" \
"__kernel void vecAdd( __global double *a, \n" \
" __global double *b, \n" \
" __global double *c, \n" \
" const unsigned int n) \n" \
"{ \n" \
" //Get our global thread ID \n" \
" int id = get_global_id(0); \n" \
" \n" \
" //Make sure we do not go out of bounds \n" \
" if (id < n) \n" \
" c[id] = a[id] + b[id]; \n" \
"} \n" \
"\n" ;
int main(int argc, char *argv[])
{
// Length of vectors
unsigned int n = 1000;
// Host input vectors
double *h_a;
double *h_b;
// Host output vector
double *h_c;
// Device input buffers
cl::Buffer d_a;
cl::Buffer d_b;
// Device output buffer
cl::Buffer d_c;
// Size, in bytes, of each vector
size_t bytes = n*sizeof(double);
// Allocate memory for each vector on host
h_a = new double[n];
h_b = new double[n];
h_c = new double[n];
// Initialize vectors on host
for(int i = 0; i < n; i++ )
{
h_a[i] = sinf(i)*sinf(i);
h_b[i] = cosf(i)*cosf(i);
}
cl_int err = CL_SUCCESS;
try {
// Query platforms
std::vector<cl::Platform> platforms;
cl::Platform::get(&platforms);
if (platforms.size() == 0) {
std::cout << "Platform size 0\n";
return -1;
}
// Get list of devices on default platform and create context
cl_context_properties properties[] =
{ CL_CONTEXT_PLATFORM, (cl_context_properties)(platforms[0])(), 0};
cl::Context context(CL_DEVICE_TYPE_GPU, properties);
std::vector<cl::Device> devices = context.getInfo<CL_CONTEXT_DEVICES>();
// Create command queue for first device
cl::CommandQueue queue(context, devices[0], 0, &err);
// Create device memory buffers
d_a = cl::Buffer(context, CL_MEM_READ_ONLY, bytes);
d_b = cl::Buffer(context, CL_MEM_READ_ONLY, bytes);
d_c = cl::Buffer(context, CL_MEM_WRITE_ONLY, bytes);
// Bind memory buffers
queue.enqueueWriteBuffer(d_a, CL_TRUE, 0, bytes, h_a);
queue.enqueueWriteBuffer(d_b, CL_TRUE, 0, bytes, h_b);
//Build kernel from source string
cl::Program::Sources source(1,
std::make_pair(kernelSource,strlen(kernelSource)));
cl::Program program_ = cl::Program(context, source);
program_.build(devices);
// Create kernel object
cl::Kernel kernel(program_, "vecAdd", &err);
// Bind kernel arguments to kernel
kernel.setArg(0, d_a);
kernel.setArg(1, d_b);
kernel.setArg(2, d_c);
kernel.setArg(3, n);
// Number of work items in each local work group
cl::NDRange localSize(64);
// Number of total work items - localSize must be devisor
cl::NDRange globalSize((int)(ceil(n/(float)64)*64));
// Enqueue kernel
cl::Event event;
queue.enqueueNDRangeKernel(
kernel,
cl::NullRange,
globalSize,
localSize,
NULL,
&event);
// Block until kernel completion
event.wait();
// Read back d_c
queue.enqueueReadBuffer(d_c, CL_TRUE, 0, bytes, h_c);
}
catch (cl::Error err) {
std::cerr
<< "ERROR: "<<err.what()<<"("<<err.err()<<")"<<std::endl;
}
// Sum up vector c and print result divided by n, this should equal 1 within error
double sum = 0;
for(int i=0; i<n; i++)
sum += h_c[i];
std::cout<<"final result: "<<sum/n<<std::endl;
// Release host memory
delete(h_a);
delete(h_b);
delete(h_c);
return 0;
}
编译(Compile)
需要先下载cl.hpp
$ module load cudatoolkit
$ CC vecAdd.cc -lOpenCL -o vecAdd.out
运行(Running)
$ aprun ./vecAdd.out
final result: 1.000000