数学——本原多项式

本原多项式定义

一个 m 阶的不可约多项式 f ( x ) \large f(x) f(x),如果 f ( x ) \large f(x) f(x) 整除 x n + 1 \large x^n+ 1 xn+1 的最小正整数 n 满足 n = 2 m − 1 \large n=2^m-1 n=2m1 ,则该多项式是本原的。

参考定义(百度上的定义):
f ( x ) = a 0 + a 1 x + a 2 x 2 + ⋯ + a n x n \large f(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n f(x)=a0+a1x+a2x2++anxn是唯一分解整环 D D D上的多项式,如果 gcd ⁡ ( a 0 + a 1 + ⋯ + a n ) = 1 \gcd (a_0+a_1+\cdots+a_n)=1 gcd(a0+a1++an)=1 ,则称 f ( x ) \large f(x) f(x) D D D上的一个本原多项式 。(符号 gcd ⁡ ( ) \gcd() gcd()表示最大公约数)
本原多项式满足以下条件:

  1. f ( x ) \large f(x) f(x)是既约的,即不能再分解因式;
  2. f ( x ) \large f(x) f(x)可整除 x m + 1 \large x^m+1 xm+1,这里的 m = 2 n − 1 \large m=2^n-1 m=2n1
  3. f ( x ) \large f(x) f(x)不能整除 x q + 1 \large x^q+1 xq+1,这里 q < m \large q<m q<m

那么什么是上面说的整除呢?

先插一个百度上查到的一个本原多项式表的图(应该是 GF(2)上的本原多项式)
在这里插入图片描述
以第一个阶为 2 的本原多项式为例 f ( x ) = x 2 + x + 1 f(x)=x^2+x+1 f(x)=x2+x+1

我们可以得到
x 0 = 1 x 1 = x x 2 = x + 1 x 3 = x 0 = 1 x^0=1\\ x^1 = x \\ x^2 = x+1 \\ x^3 = x^0=1 \\ x0=1x1=xx2=x+1x3=x0=1
所以 n = 3 n=3 n=3 f ( x ) f(x) f(x) 整除 x n + 1     ( x 3 + 1 = 1 + 1 = 0 ) x^n+1 \space\space\space(x^3+1=1+1=0) xn+1   (x3+1=1+1=0)
3 = 2 2 − 1 3 = 2^2-1 3=221 并不存在任意正整数 q < 3 q<3 q<3 使得 f ( x ) f(x) f(x) 整除 x n + 1 x^n+1 xn+1

以上为我个人理解

  • 7
    点赞
  • 54
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值