负二项分布相关

二项级数是形如(1+x)^k的式子的麦克劳林展开式,也即在x=0处的泰勒展开式,它能将这个二项式展开为无穷个x幂的和的形式。

特别地,在k为正整数时,二项级数就是代数学中的二项式定理

二项式定理

二项式定理(英语:binomial theorem),又称牛顿二项式定理。
该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。

证明过程

( x + y ) n = ( 0 n ) x n y 0 + ( 1 n ) x n − 1 y 1 + ( 2 n ) x n − 2 y 2 + … … + ( n − 1 n ) x 1 y n − 1 + ( n n ) x 0 y n = ∑ k = 0 n ( k n ) x n − k y k \begin{aligned} (x+y)^n &= \big(^n_0\big)x^ny^0 + \big(^n_1\big)x^{n-1}y^1 + \big(^n_2\big)x^{n-2}y^2 + …… + \big(^n_{n-1}\big)x^1y^{n-1} + \big(^n_{n}\big)x^0y^{n} \\ &=\sum^{n}_{k=0} \big(^n_k\big)x^{n-k}y^k \end{aligned} (x+y)n=(0n)xny0+(1n)xn1y1+(2n)xn2y2++(n1n)x1yn1+(nn)x0yn=k=0n(kn)xnkyk

二项级数

k k k为实数且 ∣ x ∣ < 1 |x| <1 x<1时:

( 1 + x ) k = ∑ n = 0 ∞ ( n k ) x n = ∑ n = 0 ∞ k ( k − 1 ) ( k − 2 ) … … ( k − n + 1 ) n ! x n = 1 + k x + k ( k − 1 ) 2 ! x 2 + k ( k − 1 ) ( k − 2 ) 3 ! x 3 + … … + k ( k − 1 ) ( k − 2 ) … … ( k − n + 1 ) n ! x n \begin{aligned} (1+x)^k &= \sum_{n=0}^{\infin}\big(^k_n \big) x^n\\ &= \sum^\infin_{n=0}\frac{k(k-1)(k-2)……(k-n+1)}{n!} x^n\\ &= 1 +kx + \frac{k(k-1)}{2!}x^2+\frac{k(k-1)(k-2)}{3!}x^3+……+\frac{k(k-1)(k-2)……(k-n+1)}{n!}x^n \end{aligned} (1+x)k=n=0(nk)xn=

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值