动态规划之背包问题

本文主要介绍01背包和完全背包的问题,个人水平有限,如有错误,欢迎指正。

动态规划算法可分解成从先到后的4个步骤:
1. 描述一个最优解的结构;
2. 递归地定义最优解的值;
3. 以“自底向上”的方式计算最优解的值;
4. 从已计算的信息中构建出最优解的路径。
其中步骤1~3是动态规划求解问题的基础。如果题目只要求最优解的值,则步骤4可以省略。

状态和状态转移方程?
状态:每个子问题的解
状态转移方程:子问题解的变化过程

先来分析01背包:
01背包(ZeroOnePack): 有N件物品和一个容量为V的背包。(每种物品均只有一件)第i件物品的质量为c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。
这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。
用子问题定义状态:即f[i][v]表示此时背包质量为v并且装入了i件物品时的最大价值。则其状态转移方程便是:
f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}


把这个过程理解下:在前i件物品放进背包时,
它有两种情况:
第一种是第i件不放进去,这时所得价值为:f[i-1][v]
第二种是第i件放进去,这时所得价值为:f[i-1][v-c[i]]+w[i](f[i-1][v-c[i]]是之前i-1件物品放入后的价值,而之所以是v-c[i]是因为在放入第i件物品后质量才为v,所以在i-1件物品


的状况下为v-c[i])
           
最后比较第一种与第二种所得价值的大小,哪种相对大,f[i][v]的值就是哪种。
#include<iostream>  
using namespace std;  
#define  V 1500  
unsigned int f[10][V];//全局变量,自动初始化为0  
unsigned int weight[10];  
unsigned int value[10];  
#define  max(x,y)   (x)>(y)?(x):(y)  
int main()  
{  
      
    int N,M;  
    cin>>N;//物品个数  
    cin>>M;//背包容量  
    for (int i=1;i<=N; i++)  
    {  
        cin>>weight[i]>>value[i];  
    }  
    for (int i=1; i<=N; i++)  
        for (int j=1; j<=M; j++)  
        {  
            if (weight[i]<=j)  
            {  
                f[i][j]=max(f[i-1][j],f[i-1][j-weight[i]]+value[i]);  
            }  
            else  
                f[i][j]=f[i-1][j];  
        }  
      
    cout<<f[N][M]<<endl;//输出最优解  
  return 0;
}  
上面计算f[i][j]可以看出,在计算f[i][j]时只使用了f[i-1][0……j],没有使用其他子问题,因此在存储子问题的解时,只存储f[i-1]子问题的解即可。这样可以用两个一维数组解决,一


个存储子问题,一个存储正在解决的子问题。
再进一步思考,计算f[i][j]时只使用了f[i-1][0……j],没有使用f[i-1][j+1]这样的话,我们先计算j的循环时,让j=M……1,只使用一个一维数组即可。
for i=1……N
for j=M……1
f[j]=max(f[j],f[j-weight[i]+value[i])


#include<iostream>  
using namespace std;  
#define  V 1500  
unsigned int f[V];//全局变量,自动初始化为0  
unsigned int weight[10];  
unsigned int value[10];  
#define  max(x,y)   (x)>(y)?(x):(y)  
int main()  
{  
      
    int N,M;  
    cin>>N;//物品个数  
    cin>>M;//背包容量  
    for (int i=1;i<=N; i++)  
    {  
        cin>>weight[i]>>value[i];  
    }  
    for (int i=1; i<=N; i++)  
        for (int j=M; j>=1; j--)  ///逆序
        {  
            if (weight[i]<=j)  
            {  
                f[j]=max(f[j],f[j-weight[i]]+value[i]);  
            }             
        }  
      
    cout<<f[M]<<endl;//输出最优解  
  
}  


再来看完全背包问题:一个背包总容量为V,现在有N个物品,第i个 物品体积为weight[i],价值为value[i],每个物品都有无限多件,现在往背包里面装东西,怎么装能使背包的内物品价值


最大?
对比一下,看到的区别是,完全背包问题中,物品有无限多件。往背包里面添加物品时,只要当前背包没装满,可以一直添加。那么状态转移方程为:
f[i][j]=max(f[i-1][j-k*weight[i]+k*value[i]),其中0<=k<=V/weight[i]
使用内存为一维数组,伪代码
for i=1……N
for j=1……M
f[j]=max(f[j],f[j-weight[i]+value[i])
和01背包问题唯一不同的是j是从1到M。01背包问题是在前一个子问题(i-1种物品)的基础上来解决当前问题(i种物品),向i-1种物品时的背包添加第i种物品;而完全背包问题是在解决当


前问题(i种物品),向i种物品时的背包添加第i种物品。
代码如下:


#include<iostream>  
using namespace std;  
#define  V 1500  
unsigned int f[V];//全局变量,自动初始化为0  
unsigned int weight[10];  
unsigned int value[10];  
#define  max(x,y)   (x)>(y)?(x):(y)  
int main()  
{  
      
    int N,M;  
    cin>>N;//物品个数  
    cin>>M;//背包容量  
    for (int i=1;i<=N; i++)  
    {  
        cin>>weight[i]>>value[i];  
    }  
    for (int i=1; i<=N; i++)  
        for (int j=1; j<=M; j++)  /顺序
        {  
            if (weight[i]<=j)  
            {  
                f[j]=max(f[j],f[j-weight[i]]+value[i]);  
            }             
        }  
      
    cout<<f[M]<<endl;//输出最优解  
  
}  
想必大家看出了和01背包的区别,这里的内循环是顺序的,而01背包是逆序的。
现在关键的是考虑:为何完全背包可以这么写?
在次我们先来回忆下,01背包逆序的原因?是为了是max中的两项是前一状态值,这就对了。
那么这里,我们顺序写,这里的max中的两项当然就是当前状态的值了,为何?
因为每种背包都是无限的。当我们把i从1到N循环时,f[v]表示容量为v在前i种背包时所得的价值,这里我们要添加的不是前一个背包,而是当前背包。所以我们要考虑的当然是当前状态。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

9号信箱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值