【动态规划】背包问题详解

正文之前提供了两个背包问题的各种运用供大家学习

01背包问题

在这里插入图片描述
输入

4 5
1 2
2 4
3 4
4 5

输出

8

题解

核心思路
在这里插入图片描述

1. 矩阵 f 初始化为全零,这样可以保证只要体积不超过 j 都能装入
f[i][j] : 即从前 i 个物品中选,总体积不超过 j 的方案数。
f[i - 1][j - v] 表示: 当前为要处理的物品 i, 当满足 j >= v 时, 当前物品可以装入,
计算装入后是否会使得总价值变大,所以需要从之前的 i - 1, j - v, 转移过来用来代表 f[i][j]

当背包容量够时:
选:f[i][j] = f[i - 1][j - v[i]] + w[i]。
不选:f[i][j] = f[i - 1][j] 。
最终取对两者取max

可以打印出来看下结果:
装入前一个物品的结果(1 2):0 2 2 2 2 2 
装入前一个物品的结果(2 4):0 2 4 6 6 6 
装入前一个物品的结果(3 4):0 2 4 6 6 8 
装入前一个物品的结果(4 5):0 2 4 6 6 8 
朴素解法
#include <bits/stdc++.h>
using namespace std;

const int N = 1010;

int n, m;
int f[N][N];

int main() {
    
    cin >> n >> m;
    
    for (int i = 1; i <= n; i ++ ) {
        int v, w;
        cin >> v >> w;
        for (int j = 0; j <= m; j ++ ) {
            f[i][j] = f[i-1][j];
            if (j >= v) f[i][j] = max(f[i][j], f[i - 1][j - v] + w); 
        }
    }
    
    cout << f[n][m];
    return 0;
}
状态压缩

代码简述:
利用滚动数组,即所以物品放于一维的空间上操作,当需要由上一状态转移过来了,为了不破坏前一阶段的数据,所以需要注意,j 从 m ~ v, 而 小于 v 的部分即为不选,不需要做任何操作,直接从上一状态转移过来即可

#include <bits/stdc++.h>
using namespace std;

const int N = 1010;

int n, m;
int f[N];

int main() {
    
    cin >> n >> m;
    
    for (int i = 1; i <= n; i ++ ) {
        int v, w;
        cin >> v >> w;
        for (int j = m; j >= v; j -- ) {
            f[j] = max(f[j], f[j - v] + w); 
        }
    }
    
    cout << f[m];
    
    return 0;
}

完全背包问题

在这里插入图片描述
输入

4 5
1 2
2 4
3 4
4 5

输出

10

题解

类比 01 背包问题,完全背包满足在体积不超过 j 的情况下 可以装无限个,所以可以通过去判断所有可能的情况,来判断价值的最大值

朴素解法
#include <bits/stdc++.h>
using namespace std;

const int N = 1010;

int n, m;
int f[N][N];

int main() {
    
    cin >> n >> m;
    
    for (int i = 1; i <= n; i ++ ) { //依次加入每个背包
        int v, w;
        cin >> v >> w;
        for (int j = 0; j <= m; j ++ ) { // 依次计算 子状态
            for (int k = 0; k * v <= j; k ++ ) //循环判断再满足体积不超过 j 的情况下价值最大
                f[i][j] = max(f[i][j], f[i-1][j - k * v] + k * w); //这里不需要特判不装的时候, 因为当k = 0 时,即为不装的情况。
        }
    }
    
    
    cout << f[n][m];
    
    
    return 0;
}
状态压缩

思路(非常经典)

f[i , j ] = max( f[i-1,j] , f[i-1,j-v]+w ,  f[i-1,j-2*v]+2*w , f[i-1,j-3*v]+3*w , .....)
f[i , j-v]= max(            f[i-1,j-v]   ,  f[i-1,j-2*v] + w , f[i-1,j-3*v]+2*w , .....)
由上两式,可得出如下递推关系: 
                        f[i][j]=max(f[i,j-v] + w , f[i-1][j])  //即选与不选两种状态

注意完全背包问题再转换为一维时, j 从 v ~ m ,由推导式可以看出,f[i][j] 是基于当前的状态,而不是上一状态转移过来,就得使劲污染

#include <bits/stdc++.h>
using namespace std;

const int N = 1010;

int n, m;
int f[N];

int main() {
    
    cin >> n >> m;
    
    for (int i = 1; i <= n; i ++ ) { //依次加入每个背包
        int v, w;
        cin >> v >> w;
        for (int j = v; j <= m; j ++ ) { 
            f[j] = max(f[j], f[j - v] + w);
        }
    }
    
    
    cout << f[m];
    
    
    return 0;
}

多重背包问题

在这里插入图片描述
输入

4 5
1 2 3
2 4 1
3 4 3
4 5 2

输出

10

题解

完全背包问题的特殊形式,每个物品不能超过 s 件

朴素版
#include <bits/stdc++.h>
using namespace std;

const int N = 110;

int n, m;
int f[N][N];

int main() {
    
    cin >> n >> m;
    
    for (int i = 1; i <= n;  i++ ) {
        int v, w, s;
        cin >> v >> w >> s;
        for (int j = 0; j <= m; j ++ ) { 
            for (int k = 0; k * v <= j && k <= s; k ++ ) {
                f[i][j] = max(f[i][j], f[i - 1][j - k * v] + k * w);
            }
        }
    }
    
    cout << f[n][m];
    
    
    return 0;
}
压缩到一维

但是这种情况只是压缩了空间,时间复杂度仍然没有降下来

#include <bits/stdc++.h>
using namespace std;

const int N = 110;

int n, m;
int f[N];

int main() {
    
    cin >> n >> m;
    
    for (int i = 1; i <= n;  i++ ) {
        int v, w, s;
        cin >> v >> w >> s;
        for (int j = m; j >= 0; j -- ) { 
            for (int k = 0; k * v <= j && k <= s; k ++ ) {
                f[j] = max(f[j], f[j - k * v] + k * w);
            }
        }
    }
    
    cout << f[m];
    
    
    return 0;
}
二进制优化

这里奉上大佬的优化讲解 : 二进制优化多重背包的思路
核心就是将多重背包拆为 01 背包问题, 拆的手法就是利用二进制

#include <bits/stdc++.h>
using namespace std;

const int N = 2010;
typedef pair<int, int> PII;

int n, m;
int f[N];

vector<PII> G;

/*
    首先可以利用每个物品分成 s 份,跑 01 背包, 但是会超时
    进一步优化利用二进制来表示物品个数:
    例如: 14 : 1 2 4 7   
           6  : 1 2 3 
    可以看出最后一个特殊处理,不能超出所要表达的物品个数


*/


int main() {
    
    cin >> n >> m;
    
    for (int i = 1; i <= n; i ++ ) {
        int v, w, s;
        cin >> v >> w >> s;
        for (int k = 1; k <= s; k *= 2) {
            s -= k;
            G.push_back({k * v, k * w});
        }
        if (s > 0) G.push_back({s * v, s * w}); //把最后剩余的部分装入进去;
    }
    
    
    //利用上述就可以跑 01 背包模型啦
    
    for (int i = 0; i < G.size(); i ++ ) {
        int v = G[i].first, w = G[i].second;
        for (int j = m; j >= v; j -- ) {
            f[j] = max(f[j], f[j - v] + w);
        }
    }
    
    cout << f[m];
    
    
    return 0;
}

分组背包问题

在这里插入图片描述

输入

3 5
2
1 2
2 4
1
3 4
1
4 5

输出

8

题解

同 01 背包问题,只需遍历每一组的每一个物品,每次都将每种状态保存起来,最终选择出最大的价值

朴素版
#include <bits/stdc++.h>
using namespace std;

const int N = 110;

int n, m;

int f[N][N], s[N], v[N][N], w[N][N];

int main() {
    
    cin >> n >> m;
    
    for (int i = 1; i <= n; i ++ ) {
        cin >> s[i];
        for (int j = 1; j <= s[i]; j ++ ) {
            cin >> v[i][j] >> w[i][j];
        }
    }
    
    
    for (int i = 1; i <= n; i ++ ) { //遍历每一组
        for (int j = 0; j <= m; j ++ ) { 
            for (int k = 0; k <= s[i]; k ++ ) { //遍历组内的每一个物品
                /* 这里的条件一定要写下来,不能放在 k 的判断里面。
                   如果放上去,只要第一个物品不满足则跳出 for 循环,
                   而后面的物品可能有满足条件的。
                */
                if (j >= v[i][k]) f[i][j] = max(f[i][j], f[i - 1][j - v[i][k]] + w[i][k]);
            }
        }
    }
    
    cout << f[n][m];
    
    return 0;
}
状态压缩
#include <bits/stdc++.h>
using namespace std;

const int N = 110;

int n, m;

int f[N], s[N], v[N][N], w[N][N];

int main() {
    
    cin >> n >> m;
    
    for (int i = 1; i <= n; i ++ ) {
        cin >> s[i];
        for (int j = 1; j <= s[i]; j ++ ) {
            cin >> v[i][j] >> w[i][j];
        }
    }
    
    
    for (int i = 1; i <= n; i ++ ) {
        for (int j = m; j >= 0; j -- ) {
            for (int k = 0; k <= s[i]; k ++ ) {
                /* 这里的条件一定要写下来,不能放在 k 的判断里面。
                   如果放上去,只要第一个物品不满足则跳出 for 循环,
                   而后面的物品可能有满足条件的。
                   同时,注意这里是 j >= v[i][k], 不是 j >= k * v[i][k],在一组最多只能选一个
                */
                if (j >= v[i][k]) f[j] = max(f[j], f[j - v[i][k]] + w[i][k]);
            }
        }
    }
    
    cout << f[m];
    
    return 0;
}

背包问题求具体方案数

AcWing 12. 背包问题求具体方案
题目要求输出字典序最小的解,假设存在一个包含第 1 个物品的最优解,为了确保字典序最小那么我们必然要选第一个。那么问题就转化成从 2 ~ N 2~N 2N 这些物品中找到最优解。之前的 f ( i , j ) f(i,j) f(i,j) 记录的都是前 i i i 个物品总容量为 j j j 的最优解,那么我们现在将 f(i,j) 定义为从第 i i i 个元素到最后一个元素总容量为 j j j 的最优解。接下来考虑状态转移:

f ( i , j ) = m a x ( f ( i + 1 , j ) , f ( i + 1 , j − v [ i ] ) + w [ i ] ) f(i,j)=max(f(i+1,j),f(i+1,j−v[i])+w[i]) f(i,j)=max(f(i+1,j),f(i+1,jv[i])+w[i])

两种情况,第一种是不选第 i i i 个物品,那么最优解等同于从第 i + 1 i+1 i+1 个物品到最后一个元素总容量为 j j j 的最优解;第二种是选了第 i i i 个物品,那么最优解等于当前物品的价值 w [ i ] w[i] w[i] 加上从第 i + 1 i+1 i+1 个物品到最后一个元素总容量为 j − v [ i ] j−v[i] jv[i] 的最优解。

计算完状态表示后,考虑如何的到最小字典序的解。首先 f ( 1 , m ) f(1,m) f(1,m) 肯定是最大价值,那么我们便开始考虑能否选取第1个物品呢。

如果 f ( 1 , m ) = f ( 2 , m − v [ 1 ] ) + w [ 1 ] f(1,m) = f(2,m−v[1])+w[1] f(1,m)=f(2,mv[1])+w[1],说明选取了第 1 个物品可以得到最优解。

如果 f ( 1 , m ) = f ( 2 , m ) f(1,m)=f(2,m) f(1,m)=f(2,m),说明不选取第一个物品才能得到最优解。

如果 f ( 1 , m ) = f ( 2 , m ) = f ( 2 , m − v [ 1 ] ) + w [ 1 ] f(1,m)=f(2,m)=f(2,m−v[1])+w[1] f(1,m)=f(2,m)=f(2,mv[1])+w[1],说明选不选都可以得到最优解,但是为了考虑字典序最小,我们也需要选取该物品。

#include <bits/stdc++.h>
using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N];
int f[N][N];

int main() {

    cin >> n >> m;

    for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];

    //逆序做 01 背包问题
    /*
        0 2 4 6 6 8 
        0 0 4 4 6 8 
        0 0 0 4 6 6 
        0 0 0 0 6 6 

    */
    for (int i = n; i >= 1; i -- ) {
        for (int j = 0; j <=m; j ++ ) {
            f[i][j] = f[i + 1][j];
            if(j >= v[i]) f[i][j] = max(f[i][j], f[i + 1][j - v[i]] + w[i]);
        }
    } 

    int j = m;

    //正序开始,即为结果的开始位置,从f[1][m],开始寻找最优价值构成的物品
    for (int i = 1; i <= n; i ++ ) {
        if (j >= v[i] && f[i][j] == f[i + 1][j - v[i]] + w[i]) {
            j -= v[i];
            cout << i << " ";
        }
    }



    return 0;
}
  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值