专业的期权交易员,尤其是期权做市商,在交易过程中通常都会追求投资组合的Delta保持中性,以回避标的物价格波动的风险。我们在以往文章曾介绍过,看涨期权的卖方可以通过买入标的资产,从而形成Delta中性组合(covered call),之后随着时间流逝以及标的物价格的波动等,期权的Delta值也会不断变化,期权卖方可以通过买入或者卖出标的资产,或者买卖期权的方式不断进行动态调整,以保持整体头寸的Delta中性。但是在到期日往往有一枚“大头针”给我们制造麻烦。
大头针风险
大头针风险(Pin risk)是在期权到期日标的资产的价格与期权的行权价格很接近的情况下产生的,此时,标的价格在行权价上下变动一点将对期权的价值产生极大的影响,人们常称之为“尖锐”风险。该风险也可以想象成是由标的资产价格被大头针钉在了(pinned)行权价上而产生的,故也被称为“大头针”风险。在这种情况下,期权的卖方面临的风险是,由于无法确定所持有的期权空头头寸是否会被行权,因此无论是否采取对冲操作,所持有的期权空头头寸在期权到期日结束后都有可能形成风险,也就是说在这种情况下无法进行精确的风险对冲,进而可能会产生损失。
在期权到期日,通常会出现下面两种情况:第一种,期权处于实值状态,期权卖方在被行权后会买入或者卖出标的资产;第二种,期权处于虚值状态,期权到期无价值,卖方不会被行权,赚取权利金。有些期权合约虽然在到期日为实值,但如果实值程度不足以抵消行权费用,期权买方可能不会去行权,或者即使期权的实值程度超出行权费用,如果行权与期权买方对于期权标的资产后市走势的预期不符合,考虑到行权交收过程中可能发生不利的情况,期权买方也有可能选择不去行权。当然有的期权买方可以很任性,略微虚值的期权也可以去行权,那么对于卖方来说问题就来了——可能被行权也有可能不被行权,对冲也不是,不对冲也不是,实在是如坐针毡。
举个例子
假设某投资者卖出了10张50ETF认沽期权,行权价格为2.95元,在期权到期日当天接近收盘时,标的50ETF的价格为2.955元,期权仍处于虚值状态,Delta接近于0,此时不需要进行Delta对冲,如果保持到收盘期权卖方便基本上不会被行权。然而,事情总不是那么完美,太过风平浪静就不是江湖了,过了一会儿50ETF的价格变成2.947元,期权又变实值了,期权的Delta又接近-1了,如果保持到收盘期权卖方就很有可能被行权了,此时为了对冲Delta风险,需要卖出1000手标的50ETF(比如卖出投资组合里已有的50ETF持仓),由于ETF的行权截止时间是在标的资产交易结束时间之后,即使在收盘后期权卖方也有可能不知道有多少持仓会被行权,也就无法确定将面临的风险敞口是多少,也就没有办法进行有效的Delta对冲。假如最终该投资者卖出的10张认沽期权有8张被行权了,那么在被行权之后该投资者因为先卖出了1000手50ETF,投资组合的净持仓可能变成了200手的标的50ETF“空头”,而不是想要的Delta中性,如果在到期日之后的一两天标的50ETF大涨,那投资者又得去对冲这个因为ETF上涨带来的风险。
管理“大头针风险”
管理平值附近期权空头的最好的方法是在期权到期之前将空头仓位平掉。以50ETF期权为例,期权在到期日之后是行权交收日,再之后才可以对行权交收的标的资产进行买卖。这期间如果市场发生比较大的变动,期权卖方在被行权的情况下可能面临很大的风险,如果不想到时候看到账户中出现惊吓(或者惊喜),理智的交易员通常会选择尽量提前将仓位平掉。
在真格量化中可以通过这样的函数来监控期权的到期天数,在到期前数天提前平仓。
除此之外,期权卖方也可以预估被行权的比例,根据预估的值进行相应的风险对冲操作,上例中,如果投资者预测自己的10张认沽期权空头将会有70%被行权,也就是说被行权之后会产生700手标的50ETF的多头,那么可以在到期日收盘前卖出700手标的50ETF进行风险对冲。当然预估行权比例再迅速进行Delta调整的难度可比提前平仓要大多了,估计只适合艺高人胆大的投资者。
前面我们的讨论都是针对欧式期权进行的,如果是美式期权,由于期权买方可以在期权到期之前任一交易日进行行权,对于期权卖方而言,就必须更加注意监控和管理潜在的大头针风险。
— — — — — — E N D — — — — — —
往期文章:
Delta中性还不够?——看看如何设计Gamma中性期权策略
Python2和Python3的兼容写法
Python代码优化技巧
如何写出更好的Python代码?这是Python软件基金会的建议
真格量化可访问:
https://quant.pobo.net.cn
真格量化微信公众号,长按关注:
遇到了技术问题?欢迎加入真格量化Python技术交流QQ群 726895887