有一种风险让期权交易员如坐针毡——谨慎管理 “大头针风险”

专业的期权交易员,尤其是期权做市商,在交易过程中通常都会追求投资组合的Delta保持中性,以回避标的物价格波动的风险。我们在以往文章曾介绍过,看涨期权的卖方可以通过买入标的资产,从而形成Delta中性组合(covered call),之后随着时间流逝以及标的物价格的波动等,期权的Delta值也会不断变化,期权卖方可以通过买入或者卖出标的资产,或者买卖期权的方式不断进行动态调整,以保持整体头寸的Delta中性。但是在到期日往往有一枚“大头针”给我们制造麻烦。

 

 

  大头针风险

 

  大头针风险(Pin risk)是在期权到期日标的资产的价格与期权的行权价格很接近的情况下产生的,此时,标的价格在行权价上下变动一点将对期权的价值产生极大的影响,人们常称之为“尖锐”风险。该风险也可以想象成是由标的资产价格被大头针钉在了(pinned)行权价上而产生的,故也被称为“大头针”风险。在这种情况下,期权的卖方面临的风险是,由于无法确定所持有的期权空头头寸是否会被行权,因此无论是否采取对冲操作,所持有的期权空头头寸在期权到期日结束后都有可能形成风险,也就是说在这种情况下无法进行精确的风险对冲,进而可能会产生损失。

 

 

  在期权到期日,通常会出现下面两种情况:第一种,期权处于实值状态,期权卖方在被行权后会买入或者卖出标的资产;第二种,期权处于虚值状态,期权到期无价值,卖方不会被行权,赚取权利金。有些期权合约虽然在到期日为实值,但如果实值程度不足以抵消行权费用,期权买方可能不会去行权,或者即使期权的实值程度超出行权费用,如果行权与期权买方对于期权标的资产后市走势的预期不符合,考虑到行权交收过程中可能发生不利的情况,期权买方也有可能选择不去行权。当然有的期权买方可以很任性,略微虚值的期权也可以去行权,那么对于卖方来说问题就来了——可能被行权也有可能不被行权,对冲也不是,不对冲也不是,实在是如坐针毡。

 

 

 

  举个例子

 

  假设某投资者卖出了10张50ETF认沽期权,行权价格为2.95元,在期权到期日当天接近收盘时,标的50ETF的价格为2.955元,期权仍处于虚值状态,Delta接近于0,此时不需要进行Delta对冲,如果保持到收盘期权卖方便基本上不会被行权。然而,事情总不是那么完美,太过风平浪静就不是江湖了,过了一会儿50ETF的价格变成2.947元,期权又变实值了,期权的Delta又接近-1了,如果保持到收盘期权卖方就很有可能被行权了,此时为了对冲Delta风险,需要卖出1000手标的50ETF(比如卖出投资组合里已有的50ETF持仓),由于ETF的行权截止时间是在标的资产交易结束时间之后,即使在收盘后期权卖方也有可能不知道有多少持仓会被行权,也就无法确定将面临的风险敞口是多少,也就没有办法进行有效的Delta对冲。假如最终该投资者卖出的10张认沽期权有8张被行权了,那么在被行权之后该投资者因为先卖出了1000手50ETF,投资组合的净持仓可能变成了200手的标的50ETF“空头”,而不是想要的Delta中性,如果在到期日之后的一两天标的50ETF大涨,那投资者又得去对冲这个因为ETF上涨带来的风险。

 

管理“大头针风险”

 

  管理平值附近期权空头的最好的方法是在期权到期之前将空头仓位平掉。以50ETF期权为例,期权在到期日之后是行权交收日,再之后才可以对行权交收的标的资产进行买卖。这期间如果市场发生比较大的变动,期权卖方在被行权的情况下可能面临很大的风险,如果不想到时候看到账户中出现惊吓(或者惊喜),理智的交易员通常会选择尽量提前将仓位平掉。

 

在真格量化中可以通过这样的函数来监控期权的到期天数,在到期前数天提前平仓。

 

 

 

 

  除此之外,期权卖方也可以预估被行权的比例,根据预估的值进行相应的风险对冲操作,上例中,如果投资者预测自己的10张认沽期权空头将会有70%被行权,也就是说被行权之后会产生700手标的50ETF的多头,那么可以在到期日收盘前卖出700手标的50ETF进行风险对冲。当然预估行权比例再迅速进行Delta调整的难度可比提前平仓要大多了,估计只适合艺高人胆大的投资者。

 

 

  前面我们的讨论都是针对欧式期权进行的,如果是美式期权,由于期权买方可以在期权到期之前任一交易日进行行权,对于期权卖方而言,就必须更加注意监控和管理潜在的大头针风险。

 

— — — — — — E N D — — — — — —

往期文章:

Numpy处理tick级别数据技巧

真正赚钱的期权策略曲线是这样的

多品种历史波动率计算

如何实现全市场自动盯盘

AI是怎样看懂研报的

真格量化策略debug秘籍

真格量化对接实盘交易

常见高频交易策略简介

如何用撤单函数改进套利成交

Deque提高处理队列效率

策略编程选Python还是C++

如何用Python继承机制节约代码量

十大机器学习算法

如何调用策略附件数据

如何使用智能单

如何扫描全市场跨月价差

如何筛选策略最适合的品种

活用订单类型规避频繁撤单风险

真格量化回测撮合机制简介

如何调用外部数据

如何处理回测与实盘差别

如何利用趋势必然终结获利

常见量化策略介绍

期权交易“七宗罪”

波动率交易介绍

推高波动率的因素

波动率的预测之道

趋势交易面临挑战

如何构建知识图谱

机器学习就是现代统计学

AI技术在金融行业的应用

如何避免模型过拟合

低延迟交易介绍

架构设计中的编程范式

交易所视角下的套利指令撮合

距离概念与特征识别

气象风险与天气衍生品

设计量化策略的七个“大坑”

云计算在金融行业的应用

机器学习模型评估方法

真格量化制作期权HV-IV价差

另类数据介绍

TensorFlow中的Tensor是什么?

机器学习的经验之谈

用yfinance调用雅虎财经数据

容器技术如何改进交易系统

Python调用C++

如何选择数据库代理

统计套利揭秘

一个Call搅动市场?让我们温习一下波动率策略

如何用真格量化设计持仓排名跟踪策略

还不理解真格量化API设计?我们不妨参考一下CTP平台

理解同步、异步、阻塞与非阻塞

隐波相关系数和偏度——高维风险的守望者

Delta中性还不够?——看看如何设计Gamma中性期权策略

Python的多线程和多进程——从一个爬虫任务谈起

线程与进程的区别
皮尔逊相关系数与历史K线匹配

Python2和Python3的兼容写法
Python代码优化技巧

理解Python的上下文管理器

如何写出更好的Python代码?这是Python软件基金会的建议

评估程序化模型时我们容易忽视的指标

看看如何定位Python程序性能瓶颈

什么是Python的GIL

投资研究中的大数据分析趋势及应用

理解CTP中的回调函数

如何围绕隐含波动率设计期权交易策略                    

看看如何用Python进行英文文本的情感分析

算法交易的分类

Python编码的最佳实践总结

什么是波动率锥?如何用波动率锥设计期权策略?

期权的波动率策略与时间价值收集策略对比

期权用于套期保值和无风险套利

隐含波动率对期权策略的影响

卖出期权交易的风险管理原则和技巧

 

真格量化可访问:

https://quant.pobo.net.cn

真格量化微信公众号,长按关注:

遇到了技术问题?欢迎加入真格量化Python技术交流QQ群  726895887

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值