极坐标系:在平面内由极点,极轴和极径组成的坐标系
最优边缘检测方法的特性:
1.好的信噪比,即将非边缘点判断为边缘点的概率要低,将边缘点判断为非边缘点的概率要低
2.高的定位性能,即检测出的边缘点要尽可能在实际边缘点的中心
3.对单个边缘仅有唯一相应,即单个边缘产生多个响应的概率要低,并且虚假响应边缘应该得到最大抑制
Canny算子提取边缘的步骤:
1.高斯滤波平滑图像
2.一阶偏导有限差分计算梯度幅值和方向
3.对梯度幅值进行非极大值抑制
4.用双阈值算法检测和连接边缘
函数:该函数主要是针对瓶子口的缺陷检测,通过极坐标转换将缺陷区域提取出来并进行定位展示
主要流程:
1.读取图片,对图片进行阈值分割、canny亚像素边缘提取,图像分割
2.对分割出的瓶口区域进行极坐标转换
3.针对转换后的极坐标区域进行增强对比度、均值滤波,动态阈值分割,提取对比图的阈值超过范围内的区域,对该区域根据'height'条件筛选,满足条件的即为缺陷区域
4.缺陷区域的极坐标转换为笛卡尔坐标,并在原图上显示出缺陷位置
运行效果图:
算子:
1.auto_threshold(Image : Regions : Sigma : ):使用从直方图确定的阈值分割图像
使用多个灰度值分割单通道图像,首先,确定灰度值的绝对直方图。然后从直方图