explore_halcon.hdev(15)之p_do_bottle_mouth函数模块

本文介绍了Halcon中的p_do_bottle_mouth函数,主要用于瓶子口缺陷检测。通过极坐标转换,实现图像处理,包括阈值分割、Canny边缘检测、动态阈值分割等步骤,最终定位并显示缺陷位置。涉及到的算子包括极坐标转换、动态阈值分割、边缘检测等。
摘要由CSDN通过智能技术生成

极坐标系:在平面内由极点,极轴和极径组成的坐标系

最优边缘检测方法的特性:

1.好的信噪比,即将非边缘点判断为边缘点的概率要低,将边缘点判断为非边缘点的概率要低

2.高的定位性能,即检测出的边缘点要尽可能在实际边缘点的中心

3.对单个边缘仅有唯一相应,即单个边缘产生多个响应的概率要低,并且虚假响应边缘应该得到最大抑制

Canny算子提取边缘的步骤:

1.高斯滤波平滑图像

2.一阶偏导有限差分计算梯度幅值和方向

3.对梯度幅值进行非极大值抑制

4.用双阈值算法检测和连接边缘

函数:该函数主要是针对瓶子口的缺陷检测,通过极坐标转换将缺陷区域提取出来并进行定位展示

主要流程:

1.读取图片,对图片进行阈值分割、canny亚像素边缘提取,图像分割

2.对分割出的瓶口区域进行极坐标转换

3.针对转换后的极坐标区域进行增强对比度、均值滤波,动态阈值分割,提取对比图的阈值超过范围内的区域,对该区域根据'height'条件筛选,满足条件的即为缺陷区域

4.缺陷区域的极坐标转换为笛卡尔坐标,并在原图上显示出缺陷位置

运行效果图:

算子:

1.auto_threshold(Image : Regions : Sigma : ):使用从直方图确定的阈值分割图像

使用多个灰度值分割单通道图像,首先,确定灰度值的绝对直方图。然后从直方图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乌里随记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值