机器学习(1)多元线性回归

这篇博客介绍了机器学习中的多元线性回归,包括符号约定、术语解释、代价函数和解决思路。重点讨论了梯度下降法的学习率选择和特征缩放,以及正规方程法的解析解,分析了两者在解决线性回归问题时的优缺点。
摘要由CSDN通过智能技术生成

概述

线性回归是一个典型的监督学习问题,它常常被用来解决连续值的预测问题。我们通常需要给出一个训练集,训练集中包含已知的目的数据,同时还有与该预测可能相关的特征。
一个简单的一元线性回归的示例是:
我们能否给出房屋价格与房屋面积的关系预测?(或者给出当房屋面积为某个值时,房价的一个预测)
其中我们要给出一个训练集,训练集中包含多个房屋面积与对应房屋价格的真实数据。

符号约定与术语解释

术语解释

  • 特征:在本例中,房屋的面积、房屋的建筑年龄等一些与房屋价格可能相关的都是特征。
  • 特征向量:我们通常将同一个对象的特征数据使用一个特征向量来表示,该特征向量的分量都是该对象的一个特征。
  • 预测函数:我们想要得到的有关输入与输出的映射关系。
  • 代价函数:通常我们需要一种手段来衡量我们预测的好坏。我们一般使用一个代价函数来量化拟合与实际值的偏离程度。

符号约定

  • x i x_i xi用来表示第i个特征, x ( i ) x^{(i)} x(i)用来表示第i个输入的特征向量,同样的 x j ( i ) x^{(i)}_j xj(i)表示第i个输入的第j个特征值。
  • 输出向量我们用 y y y来表示,其中 y ( i ) y^{(i)} y(i)代表第i个输入向量对应的输出。
  • 预测函数我们表示为:
    h θ ( x ) = θ 0 + θ 1 x 1 + . . . + θ n x n = θ T x h_\theta(x)=\theta_0+\theta_1x_1+...+\theta_nx_n=\theta^Tx hθ(x)=θ0+θ1x1+...+θnxn=θTx
    这表示预测函数的输入向量 x x x有n个分量,也即n个特征。
  • 代价函数我们表示为: J ( θ ) J(\theta) J(θ)

代价函数

代价函数是衡量预测函数给出的预测值与实际值之间的偏离程度。
一个常用的代价函数是:
J ( θ ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J(\theta)=\frac{1}{2m}\sum_{i=1}^{m}(h_\theta(x^{(i)})-y^{(i)})^2 J(θ)=2m1i=1m(hθ(x(i))y(i))2
值得说明的是:这里的m指的是训练集中样本的个数,这里的 1 2 \frac{1}{2} 21是为了与求导时平方带来的2抵消。

目的

我们的目的是:确定一个预测函数
h θ ( x ) = θ 0 + θ 1 x 1 + . . . + θ n x n = X θ h_\theta(x)=\theta_0+\theta_1x_1+...+\theta_nx_n=X\theta hθ(x)=θ0

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值