【机器学习笔记】多元线性回归

文章介绍了多元线性回归的基本概念、前提假设和参数求解方法,包括岭回归和Lasso回归作为防止过拟合的手段。在sklearn库中,展示了如何使用LinearRegression、RidgeCV和LassoCV进行模型训练,并以波士顿房价数据为例展示模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

多元线性回归,将多个自变量x,拟合因变量y,形成表达式:y = x β + μ,能够对新的自变量进行回归预测;

前提假设

  1. 因变量y与参数β的表达式呈线性性;
  2. 样本随机性;
  3. 自变量x不存在线性共线性;
  4. 残差项独立同分布于均值为0,方差固定的高斯分布;
  5. 残差与自变量独立;

参数求解

损失函数:误差平方和SSE,(Xb - y)'(Xb - y);
X’X满秩时,利用最小二乘法,对X求偏导等于0,可整理求得β的表达式:
在这里插入图片描述
X’X不满秩时,可以利用梯度下降法求解β的近似解,也可用岭回归方式:
在这里插入图片描述
进而得到μ的表达式:μ = y - x β

拓展

  1. 岭回归:将损失函数引入系数β的L2范数惩罚项(最小二乘法求解参数);
  2. Lasso:将损失函数引入系数β的L1范数惩罚项(坐标下降法求解参数);
  3. 优缺点:引入惩罚项减少过拟合、且避免了自变量多重共线性问题导致的模型失真;但容易引起欠拟合,且对参数的估计为有偏估计,降低了可解释性;

sklearn实战

重要参数

class sklearn.linear_model.Ridge(
	alpha=1.0,
	fit_intercept=True, 
	normalize=False,
	copyX=True, 
	maxiter=None
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值