简介
多元线性回归,将多个自变量x,拟合因变量y,形成表达式:y = x β + μ,能够对新的自变量进行回归预测;
前提假设
- 因变量y与参数β的表达式呈线性性;
- 样本随机性;
- 自变量x不存在线性共线性;
- 残差项独立同分布于均值为0,方差固定的高斯分布;
- 残差与自变量独立;
参数求解
损失函数:误差平方和SSE,(Xb - y)'(Xb - y);
X’X满秩时,利用最小二乘法,对X求偏导等于0,可整理求得β的表达式:
X’X不满秩时,可以利用梯度下降法求解β的近似解,也可用岭回归方式:
进而得到μ的表达式:μ = y - x β
拓展
- 岭回归:将损失函数引入系数β的L2范数惩罚项(最小二乘法求解参数);
- Lasso:将损失函数引入系数β的L1范数惩罚项(坐标下降法求解参数);
- 优缺点:引入惩罚项减少过拟合、且避免了自变量多重共线性问题导致的模型失真;但容易引起欠拟合,且对参数的估计为有偏估计,降低了可解释性;
sklearn实战
重要参数
class sklearn.linear_model.Ridge(
alpha=1.0,
fit_intercept=True,
normalize=False,
copyX=True,
maxiter=None