这类标签主要反映用户的基本属性,如年龄、性别、地域、职业等。这类信息可以从用户注册时获取,或通过用户行为分析间接推断。
标签根据用户的行为习惯划分,如用户的购买记录、浏览习惯、搜索关键词等。通过对用户行为的深度分析,可以更准确地理解用户需求和偏好。
在与用户沟通的过程中,通过有意识引导、记录,获取品牌想要的用户信息标签。这种做法适用于高客单、利润高、用户决策复杂的产品。
在选择标签时,要确保标签系统的统一性和规范性,避免混乱和误解。
标签应直观、明确,方便团队成员理解和使用。
将用户在业务中的关键节点路径拆分,每个独立的路径划分成一个维度。例如,在电商行业,可以基于用户私域路径,分成新进用户、首购用户、N次复购用户、超级用户(VIP用户)等。
这是用户分层中常用的模型,根据用户在一段时间内(如30天、90天)对品牌产生的贡献进行划分。R代表最近一次消费时间,F代表消费频率,M代表消费金额。将R、F、M三个维度进行组合后,可以分为八种用户等级。
这类用户对品牌的价值最大,需要花更多资源投入去维护。例如,提供专属折扣、专属优惠券、专属会员日等。
针对这类用户,运营动作应着重于提升频率,如开发轻会员锁客、促销活动、主题活动等。
主要通过折扣优惠引导低频购买,再通过公众号、朋友圈、社群等渠道的内容建立信任。
确保在同一分层维度下,用户不能同时属于多个不同的层级。
切勿为了分层而分层,要确保分层后能够产生差异化的运营动作。
用户的分层不是一成不变的,要根据用户的行为变化及时调整。
不同的运营目标可能需要不同的分层策略。
实现基于人群标签的精细化分层运营,从而更有效地满足用户需求,提升运营效果。