Hugging Face中下载大模型——LLaMa2-7b为例

1、首先,需要有Hugging Face账户,没有的话注册一个

Hugging Face注册并申请API:Hugging Face申请API-CSDN博客

2、申请下载LLaMa2的权限

(1)搜索所需的LLaMa2-7b模型

(2)打开申请网站

除了以下红框内的,其他随便填

(3)申请后,会得到如下界面,邮箱也会收到邮件

(4)点开Meta Llama 2:中的Meta Llama 2 repository

(5)下载这个llama repository

终端直接:

​git clone https://github.com/meta-llama/llama.git​
然后执行llama/download.sh

然后终端会显示需要输入URL:

这个URL就是下图中mask掉的URL,把URL复制粘贴到终端中,

然后会让你选择下载哪个模型,或者也可以全部下载(选择需要的下载即可,没必要全部下载,这会占用内存保存模型):

下载huggingface上的llama2模型,你需要经过官方的授权。你可以在hugging face模型页面申请授权,并等待审核通过。审核通过后,你就可以下载模型了。你可以使用脚本的方式进行下载,这样可以更快速地进行下载,并且可以设置密码和代理。具体的实现方法可以参考以下示例代码: ```python from huggingface_hub import snapshot_download repo_id = "meta-llama/Llama-2-7b-hf" # 模型huggingface上的名称 local_dir = "/home/model_zoo/LLM/llama2/Llama-2-7b-hf/" # 本地模型存储的地址 local_dir_use_symlinks = False # 本地模型使用文件保存,而非blob形式保存 token = "XXX" # 在hugging face上生成的 access token # 如果需要代理的话 proxies = { 'http': 'XXXX', 'https': 'XXXX', } snapshot_download( repo_id=repo_id, local_dir=local_dir, local_dir_use_symlinks=local_dir_use_symlinks, token=token, proxies=proxies ) ``` 请确保将`repo_id`设置为llama2模型huggingface上的名称,`local_dir`设置为你想要存储模型的本地目录,`token`设置为你在hugging face上生成的access token。如果需要代理,请将`proxies`设置为你的代理。 这样,你就可以使用以上代码来下载llama2模型了。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [如何优雅地下载huggingface模型,以llama2模型下载为例](https://blog.csdn.net/ljp1919/article/details/131925099)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [LLM-LLaMA:手动模型转换与合并【Step 1: 将原版LLaMA模型转换为HF(HuggingFace)格式;Step 2: 合并LoRA...](https://blog.csdn.net/u013250861/article/details/131387468)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值