线性代数杂谈

线性代数研究什么

黑客帝国

这里写图片描述
我想看到这张图片的朋友都清楚,没错,THE MATRIX。你敢想象我们的真实世界里面的每一个对象都是由独特的大型矩阵所描述进而被操控么?任何人的行为甚至思想都能够通过矩阵所反映,对矩阵的变换,就是对事和人的真实改变,是不是很可怕!华纳兄弟公司早在1999年就完成了对十多年后的研究热点—–人工智能的场景浮现,至少我自己认为是非常有眼光,出于偶然或者是必然地对这个世界完成了一次惊天思考!

闲话扯得有点儿远

今天的主题是线性代数。很大的话题,不是么?作为刚刚走出校门的我,回忆往昔,线性代数岁月:愁。2009年,第一次系统学习了线性代数的知识,可以说只是记住了行变换、列变换等等和高中的解方程组沾边的东西,至于说后面的相似矩阵、特征值特征向量,我是一概本着死记硬背考试够用的原则,马马虎虎地混了过去。第二次学习是上了研究生,课程名称是:矩阵论。其实,自我感觉,矩阵论就是比线性代数更高的一层,站在上面能够看到更多,但是核心的东西,线性代数完全能够胜任。第二次的学习,在巨大的教室、讲话毫无语调变化的老师口中结束,收获甚微。我觉得,很多工科生在大学期间的必修课都包含了线性代数,提到现代,大部分学生不是厌烦就是有心无力,一脸迷茫。瑞典数学家L.戈丁在《数学概观》(《Encounter with Mathematics》)里面提到:“要是没有线性代数,任何数学和初等教程都讲不下去。按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,其根源来自于欧几里得几何、解析几何以及线性代数方程组理论。”显然,线性代数具有极其重要的作用,最起码,它是底层自然规律与高等现代计算手段之间唯一的桥梁。“如果不熟悉线性代数的概念,像线性性质、向量、线性空间、矩阵等等,要去学习自然科学,现在看来就和文盲差不多,甚至可能学习社会科学也是如此”。长舒一口气,当初怎么没学好呢。本次博客先不过多讲那些偏重于应用的各种特殊矩阵以及处理方法,重点是:

1. 空间
2. 线性空间
3. 向量
4. 矩阵
5. 重新理解
好了,现在开始:

1.空间(Space)

提到空间,我们首先想到的就是我们生活在三维环境,站在数学的角度上看,这是一个三维的欧几里得空间。经过数学家们的不断思考,他们用最凝练的语言描述空间的共同特点:
1、由无穷多的点组成;
2、不同点之间存在着可以描述的相对关系;
3、在空间中通过点定义长度、角度;
4、容纳运动,或者更宽泛来讲就是容纳变换。
有句话叫做:“静止是相对的,运动才是绝对的。”我们的思考起点,必须要做到“运动”,即变换是运动,状态其实也是运动,只不过这个特殊的运动是从我们很难发觉的特殊起点开始的。这点我们将在后面讲到。

2.线性空间(Linear Space)

线性空间的定义源于许多数学对象本身如何归类,例如几何向量、同型矩阵、实函数等等,它们满足相同的计算规则,都能够相加以及用数相乘,将它们称为向量。向量的一个集合V,如果对于V中的所有向量u、v和数a、b,满足:

Fau+bv=aF(u)+bF(v)

我的理解:向量是充斥在线性空间当中的对象,这些对象具有的共同特征是:都能够通过选择合适的基和坐标的方式,完成表达。怎么理解?两个关键点:一个是一组合适的基,另一个是这些基的有序求和(坐标)。
a0,0a1,0an1,0a0,1a1,1an1,1a0,2a1,2an1,2a0,n1a1,n1an1,n1k0k1kn1=k0a0,0a1,0an1,0+k1a0,1a1,1an1,1++kn1a0,n1a1,n1an1,n1

上面的等式说明线性代数最最重要的一个变换,就是线性组合。一组合适的基隐藏在了等式左边的矩阵每一个列向量当中,而那个坐标隐藏在了等式左边矩阵右乘的向量当中。按列取出每一列前面翻倍,就是这个线性组合的操作。这里,有些人会问,那你说的空间里面的对象在哪里?答案就是这个变换。 对象就是变换,而变换产生了对象。我们在教材或者文献当中看到的向量,其实只是描述对象的一部分,其余的隐藏在其左侧的那个透明矩阵当中,而这个矩阵可能是一个叫做I的单位矩阵,可能是当时环境下的一个基底矩阵,也就是那个矩阵的所有列向量都是默认的。这个观点是否能够解释第一部分最后留下的小尾巴呢?

3.向量

通过对线性空间的理解,我们进一步看看向量这个“标签”:就像我们看到“奥迪汽车”,从我们的先验知识库中寻找到这四个汉字,再从这些汉字的组合上面获取到其背后的语义,根据这个语义想象出实际的物体。向量的功能类似于标签,它仅仅是一串有序排列的数字,想要对线性空间当中的对象进行描述,就必须搭配一个基底,即那个左侧的矩阵。相同的对象,其实可以由不同的矩阵和向量的组合来表达,反过来,不同的对象,可以由相同的向量和不同的基底组合表达。

4.矩阵

矩阵是向量的有序组合。它在线性空间当中的作用是告诉我们对象改变,也就是通过矩阵规定了这个对象是如何发生变换的。是否可以这样理解,线性代数能够神奇地将本来和对象描述相关的向量组合在一起变成对象变换相关的矩阵。从静到动的一个过程。

5.重新理解

到了现在,已经有人准备开始质疑:刚才说到,矩阵(我们考虑最常见的非奇异的方阵,因为这一类矩阵是帮助我们理解问题的主要形式,把握住了这一点,遇到其他的杂七杂八的不合格矩阵,我们再想办法对付)的列向量如果是线性无关的,它们就能成为度量该线性空间的基,也就是该空间的完备坐标体系,基于这个坐标系,我们就可以使用某一个向量描述这个空间内的任何对象了。从这个方面理解,结论是:矩阵描述了一个坐标系。那为什么矩阵还能够描述变换呢?难道这里存在什么矛盾吗?到这里,教科书上面从来不讲的东西就引出来了:运动(变换)是相对的。也就是说,坐标系下面对象的变换与固定对象去变换坐标系是完全等价的。举个栗子:
考察

Ma=b

理解1:向量 a 经过M描述的变换成为了向量 b ;
理解2:空间内有一个对象,它在M的坐标系下坐标值是 a ,而它在I坐标系下坐标值是 b
神奇的矩阵,神奇的向量,它们的幕后其实就是线性空间里面的那个对象!石烂松枯,斗转星移,不变的是那个对象,任凭矩阵和向量如何改变。但是,就像浩瀚的宇宙之中的星球,虽然对于它们拥有极大的自由空间,但是仍旧逃脱不了运行的轨道,只能乖乖地服从宇宙规律。这个规律其实就是矩阵乘法。

矩阵的乘法

请看PQ两个矩阵相乘,从变换的角度来看,就是对 Q 的每一个列向量进行P描述的变换;从坐标系的观点来看,就是在 P 坐标系下的Q坐标系在 I 坐标系下的各个分量是PQ。所以,到这一步,我们应该可以理解为什么矩阵和向量的乘法要那么定义,而矩阵的乘法就是在此基础上进行的扩展。一切的根源来自于为了唯一、准确地描述出那个幕后的对象!

小结:

线性代数给我的感觉是形式大于内容,我们喜欢沉浸在不同形式之间的转换,玩小技巧,尽自己最大的可能去揭开掩盖真实世界的幕布,让人们更直观地观察到本真的世界。《骇客帝国》揭示的也许是人性的本真,这个对象需要很多的矩阵共同作用,发生诸如爱情、谋杀等的变换才能实现。作为搞工程的我,还是希望对自然规律的理解和利用要更和善,更朴素。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值