Eigen库自带快速傅里叶变换(FFT)实例

最近在开发一个项目,用到大量线性变换(矩阵计算)和快速傅里叶变换(FFT)。
利用Eigen实现矩阵计算非常方便,在实现FFT时,借助了FFTW3库,但二者由于数据类型不同,需要转化,影响计算效率。
Eigen+FFTW3的计算需要1.7s,希望进一步提高算法的计算效率。
预算尝试Eigen库自带的FFT,相关资料如下:
EigenFFT
Eigen/FFT

可以看出,Eigen FFT并不成熟,借助了kissFFT实现的。

在stackoverflow网站上找到了参考代码,
eigen-fft-library

在本地计算机上试跑了代码

#define EIGEN_FFTW_DEFAULT
#include <iostream>
#include <unsupported/Eigen/FFT>

int main(int argc, char *argv[])
{
    Eigen::MatrixXf A(3,3);
    A << 2,1,2,  3,2,1,  1,2,3;
    const int nRows = A.rows();
    const int nCols = A.cols();

    std::cout << A << "\n\n";

    Eigen::MatrixXcf B(3,3);

    Eigen::FFT< float > fft;

    for (int k = 0; k < nRows; ++k) {
        Eigen::VectorXcf tmpOut(nRows);
        fft.fwd(tmpOut, A.row(k));
        B.row(k) = tmpOut;
    }
    std::cout << B << "\n\n";
    Eigen::FFT< float > fft2;  // Workaround: Using the same FFT object for a real and a complex FFT seems not to work with FFTW
    for (int k = 0; k < nCols; ++k) {
        Eigen::VectorXcf tmpOut(nCols);
        fft2.fwd(tmpOut, B.col(k));
        B.col(k) = tmpOut;
    }
    std::cout << B << '\n';
}

输出结果如下:
在这里插入图片描述

当注释掉第一个for循环时,输出结果如下:
在这里插入图片描述
由此可以判断,两个for循环是相关的,一起实现了FFT。

可见,Eigen自带的FFT效率应该不高。

对了,在试跑上面的程序时,在fft.fwd语句处会报错,

error C4996: ‘std::copy::_Unchecked_iterators::_Deprecate’: Call to ‘std::copy’ with parameters that may be unsafe - this call relies on the caller to check that the passed values are correct. To disable this warning, use -D_SCL_SECURE_NO_WARNINGS. See documentation on how to use Visual C++ ‘Checked Iterators’

参考这个博客可解决:
Unchecked_iterators

打算继续用FFTW2,在与Eigen数据类型转化方面进行优化,并且采用FFTW3库自带的函数

fftwf_plan fftwf_plan_dft_r2c_2d(int n0, int n1,               
                                 float *in, fftwf_complex *out, unsigned flags);

进行FFT,避免输入数据额外补充虚部。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东山一角

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值