python实战项目28:boss直聘招聘数据爬取及可视化分析2.0

boss直聘招聘数据爬取及可视化分析2.0

一、需求介绍

笔者在前两篇介绍boss直聘招聘数据爬取和可视化分析的博客的基础上,对代码和功能进行了完善。在数据爬取的模块,代码更加简洁易懂,且性能更加稳定;在数据可视化模块,分析角度更加多维,先来看一下可视化图表吧!
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、完整代码

2.1 爬虫代码

im
爬虫(Web Crawler)是一种自动化程序,用于从互联网上收集信息。其主要功能是访问网页、提取数据并存储,以便后续分析或展示。爬虫通常由搜索引擎、数据挖掘工具、监测系统等应用于网络数据抓取的场景。 爬虫的工作流程包括以下几个关键步骤: URL收集: 爬虫从一个或多个初始URL开始,递归或迭代地发现新的URL,构建一个URL队列。这些URL可以通过链接分析、站点地图、搜索引擎等方式获取。 请求网页: 爬虫使用HTTP或其他协议向目标URL发起请求,获取网页的HTML内容。这通常通过HTTP请求库实现,如Python中的Requests库。 解析内容: 爬虫对获取的HTML进行解析,提取有用的信息。常用的解析工具有正则表达式、XPath、Beautiful Soup等。这些工具帮助爬虫定位和提取目标数据,如文本、图片、链接等。 数据存储: 爬虫将提取的数据存储到数据库、文件或其他存储介质中,以备后续分析或展示。常用的存储形式包括关系型数据库、NoSQL数据库、JSON文件等。 遵守规则: 为避免对网站造成过大负担或触发反爬虫机制,爬虫需要遵守网站的robots.txt协议,限制访问频率和深度,并模拟人类访问行为,如设置User-Agent。 反爬虫应对: 由于爬虫的存在,一些网站采取了反爬虫措施,如验证码、IP封锁等。爬虫工程师需要设计相应的策略来应对这些挑战。 爬虫在各个领域都有广泛的应用,包括搜索引擎索引、数据挖掘、价格监测、新闻聚合等。然而,使用爬虫需要遵守法律和伦理规范,尊重网站的使用政策,并确保对被访问网站的服务器负责。
### 使用PythonBoss抓取数据并进行数据清洗 #### 抓取工具的选择 对于从 Boss 这样的现代 Web 应用程序中提取信息的任务,Selenium 是一种强大的自动化浏览器操作工具,可以模拟人类用户的交互行为来加载动态网页内容[^1]。 ```python from selenium import webdriver import time def setup_driver(): options = webdriver.ChromeOptions() options.add_argument('headless') # 不显示浏览器窗口运行 driver = webdriver.Chrome(options=options) return driver ``` #### 数据收集流程 为了有效地收集所需的信息,在启动 Selenium 驱动器之后,应当构建一个函数用于访问目标页面,并从中抽取职位详情链接列表。这一步骤通常涉及解析 HTML 文档结构以定位到包含招聘信息的关键标签和属性。 ```python def fetch_job_links(driver, url): job_links = [] try: driver.get(url) elements = driver.find_elements_by_css_selector('.job-title a') for element in elements: link = element.get_attribute('href') if 'bosszhipin' in link and '/detail/' in link: job_links.append(link) except Exception as e: print(f"Error fetching links from {url}: ", str(e)) finally: return list(set(job_links))[:min(50, len(job_links))] # 取前50条不重复的结果 ``` #### 数据存储设计 考虑到后续可能需要对大量记录执行复杂查询,建议采用关系型数据库 MySQL 来保存所获得的数据集。创建相应的表结构之前,先定义好字段及其约束条件,确保能够高效支持业务逻辑需求。 ```sql CREATE TABLE IF NOT EXISTS jobs ( id INT AUTO_INCREMENT PRIMARY KEY, title VARCHAR(255), company_name VARCHAR(255), salary_range VARCHAR(64), city VARCHAR(64), experience_required VARCHAR(64), education_requirement VARCHAR(64), description TEXT, UNIQUE (title, company_name) USING BTREE ); ``` #### 清洗预处理 当原始HTML被转换成结构化的JSON对象后,还需要进一步清理这些半成品数据。例如去除多余的空白字符、标准化日期格式以及填补缺失值等都是常见的做法。此外,也可以利用正则表达式匹配特定模式的内容以便更精确地识别有效信息[^2]。 ```python import re def clean_salary(salary_str): pattern = r'\d+K-\d+K' match = re.search(pattern, salary_str) if match is not None: return match.group().replace('K', '') else: return '' # 更多类似的辅助方法可以根据实际遇到的情况编写... ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值