Description
Analysis
自此题本人在BZOJ上神一般的100%正确率没了!!
好吧,扯远了。
首先,请读者再读一遍题,尤其要注意加粗的字,我就被坑了。
N≤4,M≤7?!
,画一画,X的数量最多为8个。
那,我们从小到大填数,再状压一下X被填的状态。
那就有
f[i][s]=(∑i∈sf[i−1][s−i])+f[i−1][s]∗当前状态可以填的位置数
这些都很SIMPLE啦。
但是,请注意题目中的“只有”,这表示对于非X的位置,其周围的八个位置全部大于其亦是不合法的,但是我们的算法没有考虑到。
那就容斥咯。强制将那些位置变成X再做DP,容斥。
Code
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int N=8,mo=12345678,
fx[][2]={{1,0},{-1,0},{0,1},{0,-1},{-1,-1},{-1,1},{1,-1},{1,1}};
int n,m,num,b0,ans,f[30][1<<N],rest[1<<N];
bool map[N][N],bz[N][N];
struct node
{
int x,y;
}a[N],b[N];
bool pd()
{
fo(x,1,n)
fo(y,1,m)
if(map[x][y])
fo(k,0,7)
{
int xx=x+fx[k][0],yy=y+fx[k][1];
if(xx<1 || xx>n || yy<1 || yy>m) continue;
if(map[xx][yy]) return 1;
}
return 0;
}
int dp()
{
num=0;
fo(i,1,n)
fo(j,1,m)
if(map[i][j]) a[++num].x=i,a[num].y=j;
memset(rest,0,sizeof(rest));
fo(s,0,(1<<num)-1)
{
memset(bz,1,sizeof(bz));
fo(i,1,num)
if(!(s&(1<<(i-1))))
{
int x=a[i].x,y=a[i].y;
bz[x][y]=0;
fo(k,0,7)
{
int xx=x+fx[k][0],yy=y+fx[k][1];
if(xx<1 || xx>n || yy<1 || yy>m) continue;
bz[xx][yy]=0;
}
}
fo(i,1,n)
fo(j,1,m)
if(bz[i][j]) rest[s]++;
}
memset(f,0,sizeof(f));
f[0][0]=1;
fo(i,1,n*m)
fo(s,0,(1<<num)-1)
{
f[i][s]=f[i-1][s]*(rest[s]-i+1)%mo;
fo(k,1,num)
if(s&(1<<(k-1))) f[i][s]=(f[i][s]+f[i-1][s^(1<<(k-1))])%mo;
}
return f[n*m][(1<<num)-1];
}
void dfs(int cnt,int z)
{
if(cnt&1) ans=(ans-dp()+mo)%mo;
else ans=(ans+dp())%mo;
fo(i,z+1,b0)
{
int x=b[i].x,y=b[i].y;
bool p=1;
fo(k,0,7)
{
int xx=x+fx[k][0],yy=y+fx[k][1];
if(xx<1 || xx>n || yy<1 || yy>m) continue;
if(map[xx][yy]){p=0;break;}
}
if(!p) continue;
map[x][y]=1;
dfs(cnt+1,i);
map[x][y]=0;
}
}
int main()
{
int _;
char ch;
for(scanf("%d",&_);_--;)
{
scanf("%d %d\n",&n,&m);
fo(i,1,n)
{
fo(j,1,m) scanf("%c",&ch),map[i][j]=ch=='X';
scanf("\n");
}
if(pd())
{
printf("0\n");
continue;
}
b0=0;
fo(x,1,n)
fo(y,1,m)
if(!map[x][y])
{
bool p=1;
fo(k,0,7)
{
int xx=x+fx[k][0],yy=y+fx[k][1];
if(xx<1 || xx>n || yy<1 || yy>m) continue;
if(map[xx][yy]) {p=0;break;}
}
if(p) b[++b0].x=x,b[b0].y=y;
}
ans=0;
dfs(0,0);
printf("%d\n",ans);
}
return 0;
}