根据两组数据拟合曲线

1. 方法一:用Excel拟合:

选择需要拟合的两组数据,插入->散点图->右键所得图表->添加趋势线->点击属性,得到如下图:

趋势线选项:可以选择拟合成哪种线形。

点击显示公式选项,即可得到拟合所得曲线的表达式。


注意:

问题一:有些线形可以拟合但是得不出公式。

问题二:有些线性是不可以拟合的。

问题三:因为多项式拟合只能到6次,导致有些数据拟合所得曲线误差较大。


方法二: 用matlab拟合曲线。首先导入数据:主页->导入数据->应用程序->curve fitting,得到如下窗口:

1. 选择所要拟合数据;

2. 选择拟合类型;(特别说明:像 interpolant,smoothing spline这类型的拟合,因为是插值法拟合,得到的是分段函数,无法得到确切方程。所以可以用fit->save to workspace 来得到函数fitmodel,如果得到10所对应的函数值,该值可以用fitmodel(10))

3. 所的函数参数的具体值。



### 在 MATLAB 中评估两组数据拟合优度 为了评估两组数据MATLAB 中的拟合优度,可以采用多种方法。其中一种常用的方法是计算均方根误差 (Root Mean Square Error, RMS),这有助于量化实际观测值与模型预测值之间的差异。 #### 使用 `fit` 函数进行曲线拟合并计算 RMS 值 MATLAB 提供了一个强大的函数库用于处理此类问题。对于给定的数据集,可以通过调用 `fit` 函数来进行不同类型的曲线拟合操作,并利用自定义代码片段来获取 RMS 结果: ```matlab % 定义输入变量 x 和 y 表示原始数据点 x = ...; % 输入独立变量向量 y = ...; % 输入依赖变量向量 % 创建一个 fittype 对象指定要使用的模型形式(例如多项式) ft = fittype('poly2'); % 执行拟合过程获得 fittedmodel 变量保存的结果对象 [fittedmodel,gof] = fit(x',y',ft); % 获取 goodness-of-fit 参数中的 rmsd 字段作为 RMSD 度量指标 rms_value = gof.rmse; disp(['RMS value is ', num2str(rms_value)]); ``` 上述代码展示了如何创建一个二次项多项式的拟合实例[^1]。值得注意的是,在执行此程序之前需确保已准备好相应的实验数据存储于工作区内的合适位置。 #### 利用 Curve Fitting Toolbox 工具箱进一步优化流程 除了编程方式外,MATLABCurve Fitting Toolbox 还提供图形界面支持——Curve Fitting Tool (`cftool`) 来简化整个建模和评价的过程。用户可以直接导入自己的数据文件至该应用程序内完成交互式的参数调整以及可视化展示等工作流环节。 当涉及到更复杂的场景时,比如多元回归分析,则可能需要用到其他统计学概念如标准误 Standard Error(SE)[^3] 或者决定系数 R-squared(R²) 等辅助判断最终选取的最佳匹配方案。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值