【BZOJ】1087 [SCOI2005]互不侵犯King 状压DP(轮廓线DP)

110 篇文章 0 订阅
30 篇文章 0 订阅

题目传送门

看到这么小的数据范围,立马就想到了状压DP。

p.s.如果看到数据范围小于20,首先考虑状压DP;小于50,首先考虑折半搜索。——佳龙大佬

考虑每一行的国王放置,只和上一行的国王放置情况有关,于是我们可以枚举这两行的国王放置情况。

然后我们考虑DP状态的设置,定义f[i][j][now]表示当前放到第i行,已经放了j个国王,当前行的国王放置情况为now的方案数。

状态转移方程也非常好想,f[i][j][now]=Σf[i-1][j-c[pre]][pre](pre表示上一行的国王放置情况)

最后我们考虑我们这种算法的时间复杂度,O(n^3*2^(2n)),由于这题的n小于10,所以这个时间复杂度还是可以接受的。

11.5修改:其实这里的复杂度并没有想象中的那么大,其实在下面的代码中的预处理第一行的时候就把有相邻的1的状态全部标记掉了,也就是这个复杂度最多只有O(n^3*2^n)。复杂度分析什么的是真的不好搞啊……

附上AC代码:

#include <cstdio>
using namespace std;

int n,k,c[1000];
bool b[1000];
long long f[10][1000][1000],ans;

int main(void){
	scanf("%d%d",&n,&k);
	for (int i=0; i<=(1<<n)-1; ++i)
		if (!(i&(i<<1))){
			b[i]=1;
			int t=i;
			while (t) c[i]+=(t&1),t>>=1;
			f[1][c[i]][i]=1ll;
		}
	for (int i=2; i<=n; ++i)
		for (int j=0; j<=k; ++j)
			for (int now=0; now<=(1<<n)-1; ++now){
				if (!b[now]||c[now]>j) continue;
					for (int pre=0; pre<=(1<<n)-1; ++pre){
						if (!b[pre]) continue;
						if ((pre&now)||((pre>>1)&now)||((pre<<1)&now)) continue;
						f[i][j][now]+=f[i-1][j-c[now]][pre];
					}
			}
	for (int i=0; i<=(1<<n)-1; ++i) ans+=f[n][k][i];
	printf("%lld",ans);
	return 0;
}


11.5更新:

昨天和ZZK大佬在讨论另一道状压的题目时突然想起了这题,然后才在ZZK大佬的教导下了解到这道题还可以用轮廓线DP的做法来做。

其实轮廓线DP也属于状压DP,只不过状压的方式有些不同。

本来我们的暴力状压是把每一行的国王放置情况状压为一个二进制数,但轮廓线的状压是下图的思路:

(从ZZK大佬的blog偷来的图,逃)

如上图,假设我们当前DP到点(i,j),我们把所有的蓝色方块的选取情况状压在一起,就可以知道点(i,j)是否能被选取了。

对于这题,我们需要稍微修改一下状压的范围,把点(i-1,j-1)也状压进去,也就是下图的蓝色方块:


定义f[i][j][k][w]表示当前DP到点(i,j),状态为k,已经有w个国王放置好了。

很显然我们可以把前两位改成滚动数组,因为当前点的所有DP值只可能从上一个得到。

分析一下时间复杂度,O(n^4*2^(n+1)),毫无压力。

附上AC代码:

#include <cstdio>
#include <cstring>
using namespace std;

typedef long long ll;
ll n,m,f[2][1<<10][81],now,ans;

inline bool check(int i,int j,int k){
	if (i>1&&j>1&&(k&(1<<n))) return 0;
	if (i>1&&(k&(1<<n-1))) return 0;
	if (i>1&&j<n&&(k&(1<<n-2))) return 0;
	if (j>1&&(k&1)) return 0;
	return 1;
}

int main(void){
	scanf("%lld%lld",&n,&m),f[0][0][0]=1;
	for (int i=1; i<=n; ++i)
		for (int j=1; j<=n; ++j){
			now^=1,memset(f[now],0,sizeof f[now]);
			for (int k=0; k<(1<<n+1); ++k)
				for (int w=0; w<=m; ++w){
					int cur=((k&(1<<n))?k-(1<<n):k)<<1;
					f[now][cur][w]+=f[now^1][k][w];
					if (w<m&&check(i,j,k)) f[now][cur+1][w+1]+=f[now^1][k][w];
				}
		}
	for (int i=0; i<(1<<n+1); ++i) ans+=f[now][i][m];
	return printf("%lld\n",ans),0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值