Fixed win size sliding window

文章介绍了如何在LC1423、LC2134和LC2653三个编程题目中运用定长滑窗思想,涉及最大点数计算、1的最少交换次数组合以及滑动子数组的美丽值问题,通过Java代码展示了解决方案和相应数据结构的应用。
摘要由CSDN通过智能技术生成

这篇记录灵神题单中的定长滑窗环节,不跟之前的Sliding Window一起了。

1. LC 1423 可获得的最大点数

这题其实有点思维的。实现上简单。

每次从首或者尾部拿,总共拿k次。相当于有n-k张牌不拿。因为不可能从中间截断着拿,因此必然这n-k张牌是连续的,所以就变成定长n-k滑窗。更新维护最小值,最终拿总和减掉最小值就是能拿的最大值。

import java.util.HashMap;

class Solution {
    public int maxScore(int[] cardPoints, int k) {
        int sum = 0;
        for (int cardPoint : cardPoints) {
            sum+=cardPoint;
        }
        int rest = 0;
        int n = cardPoints.length;
        for (int i = 0; i < (n - k); i++) {
            rest += cardPoints[i];
        }
        int min = rest;
        for(int i=1;i<=k;i++){
            rest = rest - cardPoints[i-1]+cardPoints[i+n-k-1];
            min = Math.min(min,rest);
        }
        return (sum-min);
    }
}

2. LC 2134 最少交换次数来组合所有的1Ⅱ

这题是任意位置交换,不是相邻位置。有时间想想相邻交换要怎么做。

统计所有1的个数,统计当前区间(区间长度就是这个个数,因为把所有1聚集起来)的1的个数,差就是交换次数,维护最小值即可。统计区间的1很显然是个滑窗,环形数组取余即可。

import java.util.Arrays;

class Solution {
    public int minSwaps(int[] nums) {
        int oT = 0;
        for (int num : nums) {
            oT += num==1?1:0;
        }
        int ans = oT+1;
        int t = 0;
        for(int i=0;i<oT;i++){
            t += nums[i]==1?1:0;
        }
        ans = Math.min(ans,oT-t);
        for(int i=1;i<nums.length;i++){
            t += (nums[i-1]==1?-1:0) + (nums[(i+oT-1)%nums.length]==1?1:0);
            ans = Math.min(ans,oT-t);
        }
        return ans;
    }
}

3. LC 2653 滑动子数组的美丽值

这题我写的很丑。

大致思路就是模拟,每个窗口更新维护一个有序哈希表,里面只存放负数的数量,然后从小到大累加各个负数的数量,直到找到第k小。

这种题用数组自己模拟比官方库快多了

import java.util.*;

class Solution {
    public int[] getSubarrayBeauty(int[] nums, int k, int x) {
        int n = nums.length;
        int[] ans = new int[n - k + 1];
        Arrays.fill(ans,0);
        TreeMap<Integer, Integer> tm = new TreeMap<>();
        for (int i = 0; i < k; i++) {
            if(nums[i]<0){
                mAdd(tm,nums[i]);
            }
        }
        iter(ans,x,tm,0);
        for(int i=1;i<=n-k;i++){
            if(nums[i-1]<0){
                mRemove(tm,nums[i-1]);
            }
            if(nums[i+k-1]<0){
                mAdd(tm,nums[i+k-1]);
            }
            iter(ans,x,tm,i);
        }
        return ans;
    }

    private void iter(int[] ans,int x,Map<Integer,Integer> m,int index){
        int t = 0;
        for (Map.Entry<Integer, Integer> next : m.entrySet()) {
            t += next.getValue();
            if (t >= x) {
                ans[index] = next.getKey();
                return;
            }
        }
    }

    private void mAdd(Map<Integer,Integer> m,int num){
        m.put(
                num,
                m.getOrDefault(num,0)+1
        );
    }

    private void mRemove(Map<Integer,Integer> m,int num){
        Integer t = m.get(num);
        if(null==t){
            return;
        }
        if(1==t){
            m.remove(num);
            return;
        }
        m.put(
                num,t-1
        );
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值