[高光谱] 开源项目Hyperspectral-Classification Pytorch解析之main

这篇博客主要解析开源项目Hyperspectral-Classification Pytorch中的main.py文件,涉及编码兼容性、数据集处理、命令行参数解析、模型训练和测试等方面。项目通过命令行运行,利用argparse解析参数,包括数据集选择、模型配置、训练和测试设置等。文章还介绍了数据增强、模型选择(包括非神经网络模型和神经网络模型)以及训练过程中的指标和可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

开源项目Hyperspectral-Classification Pytorch解析之main.py

编码方式:

# -*- coding: utf-8 -*-

项目简介:

"""
DEEP LEARNING FOR HYPERSPECTRAL DATA.

This script allows the user to run several deep models (and SVM baselines)
against various hyperspectral datasets. It is designed to quickly benchmark
state-of-the-art CNNs on various public hyperspectral datas
评论 32
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值