一、透视表
pivot
df.pivot(index='ID',columns='Gender',values='Height').head()
pivot_table
常用参数:
aggfunc:对组内进行聚合统计,可传入各类函数,默认为’mean’
margins:汇总边际状态
index、column、value行、列、值都可以为多级
crosstab(交叉表)
交叉表是一种特殊的透视表,典型的用途如分组统计(但目前还不支持多级分组)
重要参数:
values和aggfunc:分组对某些数据进行聚合操作,这两个参数必须成对出现
除了边际参数margins外,还引入了normalize参数,可选’all’,‘index’,'columns’参数值
二、其他变形方法
melt
melt函数可以认为是pivot函数的逆操作,将unstacked状态的数据,压缩成stacked,使“宽”的DataFrame变“窄”
压缩与展开
1.stack:这是最基础的变形函数,总共只有两个参数:level和dropna,参数level可指定变化的列索引是哪一层(或哪几层,需要列表)
2.unstack:stack的逆函数,功能上类似于pivot_table
三、哑变量与因子化
Dummy Variable(哑变量)
get_dummies函数:其功能主要是进行one-hot编码:
factorize方法
该方法主要用于自然数编码,并且缺失值会被记做-1,其中sort参数表示是否排序后赋值
codes, uniques = pd.factorize(['b', None, 'a', 'c', 'b'], sort=True)