原创 pandas变形总结task4

一、透视表

pivot

df.pivot(index='ID',columns='Gender',values='Height').head()

pivot_table

常用参数:
aggfunc:对组内进行聚合统计,可传入各类函数,默认为’mean’
margins:汇总边际状态
index、column、value行、列、值都可以为多级

crosstab(交叉表)

交叉表是一种特殊的透视表,典型的用途如分组统计(但目前还不支持多级分组)
重要参数:
values和aggfunc:分组对某些数据进行聚合操作,这两个参数必须成对出现
除了边际参数margins外,还引入了normalize参数,可选’all’,‘index’,'columns’参数值

二、其他变形方法

melt

melt函数可以认为是pivot函数的逆操作,将unstacked状态的数据,压缩成stacked,使“宽”的DataFrame变“窄”

压缩与展开

1.stack:这是最基础的变形函数,总共只有两个参数:level和dropna,参数level可指定变化的列索引是哪一层(或哪几层,需要列表)
2.unstack:stack的逆函数,功能上类似于pivot_table

三、哑变量与因子化

Dummy Variable(哑变量)

get_dummies函数:其功能主要是进行one-hot编码:

factorize方法

该方法主要用于自然数编码,并且缺失值会被记做-1,其中sort参数表示是否排序后赋值

codes, uniques = pd.factorize(['b', None, 'a', 'c', 'b'], sort=True)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值