一,介绍
在进行分类的时候,大部分数据并不是线性可分的,而是需要通过数据映射,将数据变换到高维度进行分类,这就需要借助核函数来对其进行变换。
我们已经在线性情况下,超平面公式可以写为:
对于线性不可分,我们使用一个非线性映射,将数据映射到特征空间,在特征空间中使用线性学习器,分类函数变形如下:
二,非线性数据高纬度处理
我举一个简单的线性不可分例子,假设有两类,分别满足:
如下图:
像上面这种图形,我们无法用一个线性函数去分类,但是,当我们将其变换到三维后,如下图:
可见红色和蓝色的点被映射到了不同的平面,在更高维空间中是线性可分的(用一个平面去分割)。
三,核函数-径向基函数
常用的核函数有很多,例如,线性核:;多项式核:,拉普拉斯核:等等。
我们这里主要介绍径向基函数核(高斯核):
其中,σ是用户自定义的用于确定到达率(reach)或者说函数值跌落到0的速度参数。如果σ选得很大的话,高次特征上的权重实际上衰减得非常快,所以实际上(数值上近似一下)相当于一个低维的子空间;反过来,如果σ选得很小,则可以将任意的数据映射为线性可分——当然,这并不一定是好事,因为随之而来的可能是非常严重的过拟合问题。不过,总的来说,通过调控参数σ,高斯核实际上具有相当高的灵活性,也是使用最广泛的核函数之一。
四,Python实现
训练集数据:
-0.214824 0.662756 -1.000000 -0.061569 -0.091875 1.000000 0.406933 0.648055 -1.000000 0.223650 0.130142 1.000000 0.231317 0.766906 -1.000000 -0.748800 -0.531637 -1.000000 -0.557789 0.375797 -1.000000 0.207123 -0.019463 1.000000 0.286462 0.719470 -1.000000 0.195300 -0.179039 1.000000 -0.152696 -0.153030 1.000000 0.384471 0.653336 -1.000000 -0.117280 -0.153217 1.000000 -0.238076 0.000583 1.000000 -0.413576 0.145681 1.000000 0.490767 -0.680029 -1.000000 0.199894 -0.199381 1.000000 -0.356048 0.537960 -1.000000 -0.392868 -0.125261 1.000000 0.353588 -0.070617 1.000000 0.020984 0.925720 -1.000000 -0.475167 -0.346247 -1.000000 0.074952 0.042783 1.000000 0.394164 -0.058217 1.000000 0.663418 0.436525 -1.000000 0.402158 0.577744 -1.000000 -0.449349 -0.038074 1.000000 0.619080 -0.088188 -1.000000 0.268066 -0.071621 1.000000 -0.015165 0.359326 1.000000 0.539368 -0.374972 -1.000000 -0.319153 0.629673 -1.000000 0.694424 0.641180 -1.000000 0.079522 0.193198 1.000000 0.253289 -0.285861 1.000000 -0.035558 -0.010086 1.000000 -0.403483 0.474466 -1.000000 -0.034312 0.995685 -1.000000 -0.590657 0.438051 -1.000000 -0.098871 -0.023953 1.000000 -0.250001 0.141621 1.000000 -0.012998 0.525985 -1.000000 0.153738 0.491531 -1.000000 0.388215 -0.656567 -1.000000 0.049008 0.013499 1.000000 0.068286 0.392741 1.000000 0.747800 -0.066630 -1.000000 0.004621 -0.042932 1.000000 -0.701600 0.190983 -1.000000 0.055413 -0.024380 1.000000 0.035398 -0.333682 1.000000 0.211795 0.024689 1.000000 -0.045677 0.172907 1.000000 0.595222 0.209570 -1.000000 0.229465 0.250409 1.000000 -0.089293 0.068198 1.000000 0.384300 -0.176570 1.000000 0.834912 -0.110321 -1.000000 -0.307768 0.503038 -1.000000 -0.777063 -0.348066 -1.000000 0.017390 0.152441 1.000000 -0.293382 -0.139778 1.000000 -0.203272 0.286855 1.000000 0.957812 -0.152444 -1.000000 0.004609 -0.070617 1.000000 -0.755431 0.096711 -1.000000 -0.526487 0.547282 -1.000000 -0.246873 0.833713 -1.000000 0.185639 -0.066162 1.000000 0.851934 0.456603 -1.000000 -0.827912 0.117122 -1.000000 0.233512 -0.106274 1.000000 0.583671 -0.709033 -1.000000 -0.487023 0.625140 -1.000000 -0.448939 0.176725 1.000000 0.155907 -0.166371 1.000000 0.334204 0.381237 -1.000000 0.081536 -0.106212 1.000000 0.227222 0.527437 -1.000000 0.759290 0.330720 -1.000000 0.204177 -0.023516 1.000000 0.577939 0.403784 -1.000000 -0.568534 0.442948 -1.000000 -0.011520 0.021165 1.000000 0.875720 0.422476 -1.000000 0.297885 -0.632874 -1.000000 -0.015821 0.031226 1.000000 0.541359 -0.205969 -1.000000 -0.689946 -0.508674 -1.000000 -0.343049 0.841653 -1.000000 0.523902 -0.436156 -1.000000 0.249281 -0.711840 -1.000000 0.193449 0.574598 -1.000000 -0.257542 -0.753885 -1.000000 -0.021605 0.158080 1.000000 0.601559 -0.727041 -1.000000 -0.791603 0.095651 -1.000000 -0.908298 -0.053376 -1.000000 0.122020 0.850966 -1.000000 -0.725568 -0.292022 -1.000000 测试集数据: 0.676771 -0.486687 -1.000000 0.008473 0.186070 1.000000 -0.727789 0.594062 -1.000000 0.112367 0.287852 1.000000 0.383633 -0.038068 1.000000 -0.927138 -0.032633 -1.000000 -0.842803 -0.423115 -1.000000 -0.003677 -0.367338 1.000000 0.443211 -0.698469 -1.000000 -0.473835 0.005233 1.000000 0.616741 0.590841 -1.000000 0.557463 -0.373461 -1.000000 -0.498535 -0.223231 -1.000000 -0.246744 0.276413 1.000000 -0.761980 -0.244188 -1.000000 0.641594 -0.479861 -1.000000 -0.659140 0.529830 -1.000000 -0.054873 -0.238900 1.000000 -0.089644 -0.244683 1.000000 -0.431576 -0.481538 -1.000000 -0.099535 0.728679 -1.000000 -0.188428 0.156443 1.000000 0.267051 0.318101 1.000000 0.222114 -0.528887 -1.000000 0.030369 0.113317 1.000000 0.392321 0.026089 1.000000 0.298871 -0.915427 -1.000000 -0.034581 -0.133887 1.000000 0.405956 0.206980 1.000000 0.144902 -0.605762 -1.000000 0.274362 -0.401338 1.000000 0.397998 -0.780144 -1.000000 0.037863 0.155137 1.000000 -0.010363 -0.004170 1.000000 0.506519 0.486619 -1.000000 0.000082 -0.020625 1.000000 0.057761 -0.155140 1.000000 0.027748 -0.553763 -1.000000 -0.413363 -0.746830 -1.000000 0.081500 -0.014264 1.000000 0.047137 -0.491271 1.000000 -0.267459 0.024770 1.000000 -0.148288 -0.532471 -1.000000 -0.225559 -0.201622 1.000000 0.772360 -0.518986 -1.000000 -0.440670 0.688739 -1.000000 0.329064 -0.095349 1.000000 0.970170 -0.010671 -1.000000 -0.689447 -0.318722 -1.000000 -0.465493 -0.227468 -1.000000 -0.049370 0.405711 1.000000 -0.166117 0.274807 1.000000 0.054483 0.012643 1.000000 0.021389 0.076125 1.000000 -0.104404 -0.914042 -1.000000 0.294487 0.440886 -1.000000 0.107915 -0.493703 -1.000000 0.076311 0.438860 1.000000 0.370593 -0.728737 -1.000000 0.409890 0.306851 -1.000000 0.285445 0.474399 -1.000000 -0.870134 -0.161685 -1.000000 -0.654144 -0.675129 -1.000000 0.285278 -0.767310 -1.000000 0.049548 -0.000907 1.000000 0.030014 -0.093265 1.000000 -0.128859 0.278865 1.000000 0.307463 0.085667 1.000000 0.023440 0.298638 1.000000 0.053920 0.235344 1.000000 0.059675 0.533339 -1.000000 0.817125 0.016536 -1.000000 -0.108771 0.477254 1.000000 -0.118106 0.017284 1.000000 0.288339 0.195457 1.000000 0.567309 -0.200203 -1.000000 -0.202446 0.409387 1.000000 -0.330769 -0.240797 1.000000 -0.422377 0.480683 -1.000000 -0.295269 0.326017 1.000000 0.261132 0.046478 1.000000 -0.492244 -0.319998 -1.000000 -0.384419 0.099170 1.000000 0.101882 -0.781145 -1.000000 0.234592 -0.383446 1.000000 -0.020478 -0.901833 -1.000000 0.328449 0.186633 1.000000 -0.150059 -0.409158 1.000000 -0.155876 -0.843413 -1.000000 -0.098134 -0.136786 1.000000 0.110575 -0.197205 1.000000 0.219021 0.054347 1.000000 0.030152 0.251682 1.000000 0.033447 -0.122824 1.000000 -0.686225 -0.020779 -1.000000 -0.911211 -0.262011 -1.000000 0.572557 0.377526 -1.000000 -0.073647 -0.519163 -1.000000 -0.281830 -0.797236 -1.000000 -0.555263 0.126232 -1.000000 代码:
import numpy as np import matplotlib.pyplot as plt # 读取数据 def loadDataSet(fileName): dataMat = []; labelMat = [] fr = open(fileName) for line in fr.readlines(): #逐行读取,滤除空格等 lineArr = line.strip().split('\t') dataMat.append([float(lineArr[0]), float(lineArr[1])]) #添加数据 labelMat.append(float(lineArr[2])) #添加标签 return dataMat,labelMat # 核函数 ,本例中计算ΣXj*Xi def kernelTrans(X, A, kTup): m,n = np.shape(X) K = np.mat(np.zeros((m,1))) if kTup[0]=='lin': K = X * A.T # 线性核函数 elif kTup[0]=='rbf': for j in range(m): deltaRow = X[j,:] - A K[j] = deltaRow*deltaRow.T K = np.exp(K/(-1*kTup[1]**2)) else: raise NameError('Houston We Have a Problem -- \ That Kernel is not recognized') return K # 选择一个不同于i的j值,以获得两个乘子 def selectJrand(i,m): j=i while (j==i): j = int(np.random.uniform(0,m)) return j # 修剪alpha # aj - alpha值 # H - alpha上限 # L - alpha下限 def clipAlpha(aj, H, L): if aj > H: aj = H if L > aj: aj = L return aj class optStruct: def __init__(self,dataMatIn, classLabels, C, toler, kTup): # Initialize the structure with the parameters self.X = dataMatIn # 分类数据 self.labelMat = classLabels # 分类标示 self.C = C # 常数 self.tol = toler # 学习目标 self.m = np.shape(dataMatIn)[0] self.alphas = np.mat(np.zeros((self.m,1))) # 参数α self.b = 0 self.eCache = np.mat(np.zeros((self.m,2))) # 存储误差 self.K = np.mat(np.zeros((self.m,self.m))) # 存储ΣXj*Xi for i in range(self.m): self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup) print(self.K[:,i]) # 计算误差 def calcEk(oS, k): fXk = float(np.multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b) Ek = fXk - float(oS.labelMat[k]) return Ek # 选取第二个参数并计算其误差,并返回误差最大的j和Ej def selectJ(i, oS, Ei): maxK = -1; maxDeltaE = 0; Ej = 0 oS.eCache[i] = [1,Ei] # 保存误差 # 取出保存了误差的行 validEcacheList = np.nonzero(oS.eCache[:,0].A)[0] # oS.eCache[:,0].A 去第一列转化为数组 if (len(validEcacheList)) > 1: for k in validEcacheList: # 循环计算获取最大步长 if k == i: continue # 参数相同不计算 Ek = calcEk(oS, k) deltaE = abs(Ei - Ek) if (deltaE > maxDeltaE): maxK = k; maxDeltaE = deltaE; Ej = Ek # 选取步长最大的j return maxK, Ej else: # 第一次获取 j = selectJrand(i, oS.m) Ej = calcEk(oS, j) return j, Ej #α更新后重新计算误差 def updateEk(oS, k): Ek = calcEk(oS, k) oS.eCache[k] = [1,Ek] def innerL(i, oS): Ei = calcEk(oS, i) # 第一步,计算误差 if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)): j,Ej = selectJ(i, oS, Ei) # 随机选取第二个参数 alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy(); # 保存αold # 第二步,计算边界 if (oS.labelMat[i] != oS.labelMat[j]): L = max(0, oS.alphas[j] - oS.alphas[i]) H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i]) else: L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C) H = min(oS.C, oS.alphas[j] + oS.alphas[i]) if L==H: print ("L==H"); return 0 eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] # 第三步,计算学习速率η if eta >= 0: print ("eta>=0"); return 0 oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta # 第四步:更新αj oS.alphas[j] = clipAlpha(oS.alphas[j],H,L) # 第五步:修剪αj updateEk(oS, j) # 更新误差率 if (abs(oS.alphas[j] - alphaJold) < 0.00001): print ("j not moving enough"); return 0 oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j]) # 第六步:更新αi updateEk(oS, i) # 更新误差率 # 第七步:更新b1,b2 b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j] b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j] # 第八步:更新b if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1 elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2 else: oS.b = (b1 + b2)/2.0 return 1 else: return 0 def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)): #full Platt SMO oS = optStruct(np.mat(dataMatIn),np.mat(classLabels).transpose(),C,toler, kTup) iter = 0 entireSet = True; alphaPairsChanged = 0 while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)): alphaPairsChanged = 0 if entireSet: #go over all for i in range(oS.m): alphaPairsChanged += innerL(i,oS) print ("全样本遍历:第%d次迭代 样本:%d, alpha优化次数:%d" % (iter,i,alphaPairsChanged)) iter += 1 else:#go over non-bound (railed) alphas nonBoundIs = np.nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0] for i in nonBoundIs: alphaPairsChanged += innerL(i,oS) print ("non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)) iter += 1 if entireSet: entireSet = False #toggle entire set loop elif (alphaPairsChanged == 0): entireSet = True print ("iteration number: %d" % iter) return oS.b,oS.alphas def calcWs(alphas,dataArr,classLabels): X = np.mat(dataArr); labelMat = np.mat(classLabels).transpose() m,n = np.shape(X) w = np.zeros((n,1)) for i in range(m): w += np.multiply(alphas[i]*labelMat[i],X[i,:].T) return w def testRbf(k1=1.3): dataArr,labelArr = loadDataSet('testSetRBF.txt') b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) datMat=np.mat(dataArr); labelMat = np.mat(labelArr).transpose() svInd=np.nonzero(alphas.A>0)[0] sVs=datMat[svInd] labelSV = labelMat[svInd] print ("支持向量个数: %d " % np.shape(sVs)[0]) m,n = np.shape(datMat) errorCount = 0 for i in range(m): kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1)) predict=kernelEval.T * np.multiply(labelSV,alphas[svInd]) + b if np.sign(predict)!=np.sign(labelArr[i]): errorCount += 1 print ("训练集错误率: %f" % (float(errorCount)/m)) dataArr,labelArr = loadDataSet('testSetRBF2.txt') errorCount = 0 datMat=np.mat(dataArr); labelMat = np.mat(labelArr).transpose() m,n = np.shape(datMat) for i in range(m): kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1)) predict=kernelEval.T * np.multiply(labelSV,alphas[svInd]) + b if np.sign(predict)!=np.sign(labelArr[i]): errorCount += 1 print ("测试集错误率: %f" % (float(errorCount)/m)) if __name__ == '__main__': testRbf()