1. MPPT算法概述
最大功率点追踪(MPPT)算法是光伏(PV)系统中至关重要的技术,它可以最大化太阳能电池阵列的功率输出。MPPT算法通过实时调整太阳能电池阵列的负载,使其工作在最大功率点(MPP)附近。
MPP是太阳能电池阵列在特定条件下(如辐照度和温度)可以输出的最大功率点。由于太阳能电池阵列的输出特性是非线性的,因此MPP会随着环境条件的变化而变化。MPPT算法通过持续监测电池阵列的输出电压和电流,并调整负载,以确保电池阵列始终工作在MPP附近。
2. MPPT算法理论基础
2.1 光伏电池特性分析
太阳能板也叫光伏电池。是通过光电效应,把光能转换为电能的设备。
先介绍太阳能板的特性。太阳能的额定参数是在地面光伏组件标准测试条件(STC)条件下测量得到的。
STC有三个条件:第一、光线通过大气的实际距离为大气垂直厚度的1.5倍。第二、指标准测试太阳电池的光线的辐照度为1000W/m2。第三、在25ºC的温度下工作。
STC条件会影响光伏电池的开路电压和短路电流。有补偿公式。以下是用Matlab或者Octave绘制光伏电池特性曲线的代码。其中额定值可以通过规格书查找得到,这里影响曲线的可以修改的参数有:
1、到达太阳能板表面的太阳辐射为Sref;
2、太阳能板工作温度为25摄氏度。开路电压Uoc,短路电流Isc,最大功率时电压Um,最大功率时电流Im。a、b、c都是经验值,经过补偿后就可得到修正后的开路电压Uoc_comp和短路电流Isc_comp。
曲线上,每一个点都是光伏电池的工作点。即,光伏电池在正常工作时,假如不是外部因素的改变,得到光伏电池的工作电压,即可在曲线中获得光伏电池的电流、功率。
从电压-功率特性曲线可看出,在当前的环境条件下,太阳能板的最大输出功率为曲线的峰值。这是太阳能板达到最大的能量转换效率。由于能量守恒,太阳能板获得的光能为其输出的电能加上发热量。因此需要通过控制太阳能板的工作电压或者工作电流,让太阳能板工作在最大功率点。这种算法叫最大功率点跟踪(Maximum Power Point Tracking)
温度影响
温度升高,光伏电池的开路电压降低,短路电流略有增加。因此,温度升高会导致输出功率下降。
负载影响
负载阻抗与光伏电池的输出阻抗匹配时,光伏电池输出功率最大。
2.2 最大功率点追踪原理
最大功率点追踪(MPPT)算法的目标是寻找光伏电池在特定工作条件下的最大功率点(MPP)。MPP是光伏电池输出功率与输出电压的关系曲线上的一个点,在此点上,光伏电池输出功率最大。
MPPT算法通过不断调整光伏电池的输出电压或电流,使光伏电池工作在MPP附近,从而获得最大功率输出。
3. MPPT算法实践应用
3.1 MPPT算法分类
MPPT算法主要分为几大类:
固定电压法
根据经验,单节太阳能板的最大功率点,都在开路电压Uoc的0.78倍附近,所以使用固定输入电压来达到最大功率。
扰动观测法
扰动观测法通过不断扰动光伏电池的输出电压或电流,观察输出功率的变化,从而确定MPP所在的方向。
导数法
导数法通过计算光伏电池输出功率对输出电压或电流的导数,确定MPP所在的方向。
智能化方法
智能化方法利用模糊逻辑、神经网络等技术,通过学习光伏电池的特性和环境参数,预测MPP所在的方向。
3.2 固定电压法
工作温度25℃,光照变化时的光伏特性曲线
下图中,光照设定为1000W/m2,工作温度分别是25℃(蓝色)、45℃(红色)、65℃(橙色)。
上面曲线可知,就算开路电压改变,最大功率点的电压除以曲线的开路电压,结果都是比较接近0.78的。
3.3 扰动观测法
扰动观测法是一种基于试错的MPPT算法,其原理是通过对光伏电池的输出功率进行扰动,并观测扰动后的功率变化,从而找到最大功率点。扰动观测法主要包括两种方法:增量扰动法和微分扰动法。
3.1.1 增量扰动法
增量扰动法是一种最简单的扰动观测法,其原理是:
-
首先,选择一个扰动步长Δd。
-
然后,对光伏电池的输入电压或电流进行扰动,即d = d + Δd。
-
观测扰动后的输出功率P。
-
如果P > P0,则说明扰动方向正确,继续扰动;如果P < P0,则说明扰动方向错误,反向扰动。
-
重复步骤2-4,直到找到最大功率点。
当dP>dU时,工作点在最大功率点左边,需要增加工作电压。
当dP<dU时,工作点在最大功率点右边,需要减少工作电压。
当dP=dU时,达到最大功率点。
以下两个流程图摘自《独立式光伏发电系统最大功率点跟踪算法研究_张淼》。
从P-V曲线可知,在最大功率点左边,斜率较小。改变固定的电压,功率改变较小。而最大功率点右边,斜率较大。因此可以算法上,在最大功率点左边,选择一个较大的电压步长;而在最大功率点右边,选择一个较小的电压步长。可加快跟踪效果。
实现方法代码全摘自TI的ControlSuite之中的Solar Lib(安装好controlSuite后,路径是ti\controlSUITE\libs\app_libs\solar\v1.2\float\):
//*********** Structure Definition ********//
typedef struct {
float32 Ipv;
float32 Vpv;
float32 DeltaPmin;
float32 MaxVolt;
float32 MinVolt;
float32 Stepsize;
float32 VmppOut;
float32 DeltaP;
float32 PanelPower;
float32 PanelPower_Prev;
int16 mppt_enable;
int16 mppt_first;
} MPPT_PNO_F;
//*********** Structure Init Function ****//
void MPPT_PNO_F_init(MPPT_PNO_F *v)
{
v->Ipv=0;
v->Vpv=0;
v->DeltaPmin=(0.00001);
v->MaxVolt=(0.9);
v->MinVolt=0;
v->Stepsize=(0.002);
v->VmppOut=0;
v->DeltaP=0;
v->PanelPower=0;
v->PanelPower_Prev=0;
v->mppt_enable=1;
v->mppt_first=1;
}
//*********** Function Definition ********//
void MPPT_PNO_F_FUNC(MPPT_PNO_F *v)
{
if (v->mppt_enable==1)
{
if (v->mppt_first == 1)
{
v->VmppOut= v->Vpv - (0.02);
v->mppt_first=0;
v->PanelPower_Prev=v->PanelPower;
}
else
{
v->PanelPower=(v->Vpv*v->Ipv);
v->DeltaP=v->PanelPower-v->PanelPower_Prev;
if (v->DeltaP > v->DeltaPmin)
{
v->VmppOut=v->Vpv+v->Stepsize;
}
else
{
if (v->DeltaP < -v->DeltaPmin)
{
v->Stepsize=-v->Stepsize;
v->VmppOut=v->Vpv+v->Stepsize;
}
}
v->PanelPower_Prev = v->PanelPower;
}
if(v->VmppOut < v->MinVolt) v->VmppOut = v->MinVolt;
if(v->VmppOut > v->MaxVolt) v->VmppOut = v->MaxVolt;
}
}
增量扰动法的优点是简单易实现,但缺点是收敛速度慢,而且容易受到噪声干扰。
3.1.2 微分扰动法
微分扰动法是一种改进的扰动观测法,其原理是:
-
首先,计算光伏电池输出功率P对输入电压或电流的微分值dP/dd。
-
然后,根据dP/dd的值判断扰动方向:如果dP/dd > 0,则说明扰动方向正确,继续扰动;如果dP/dd < 0,则说明扰动方向错误,反向扰动。
-
重复步骤1-2,直到找到最大功率点。
微分扰动法的优点是收敛速度快,而且不容易受到噪声干扰,但缺点是实现复杂度较高。
3.2 电导增量法
最大功率点跟踪实质上就是搜索满足条件的工作点,由于数字控制中检测及控制精度的限制,以近似代替,影响了MPPT算法的精确性。一般而言,由步长决定,当最小步长一定时,MPPT算法的精度就由对的近似程度决定。扰动观测法用两点功率差近似代替微分,即从出发,推演出以功率增量为搜索判据的MPPT算法。
实际上,为了进一步提高MPPT算法对最大功率点的跟踪精度,可以考虑用功率全微分近似代替的MPPT算法,即从出发,推演出以电导和电导变化率之间的关系为搜索判据的MPPT算法,即电导增量法:
导数法是一种基于导数的MPPT算法:
-
首先,获取光伏电池输出功率P对输入电压或电流的导数dP/dd。
-
然后,求解dP/dd = 0,即可得到最大功率点。
电池输出功率是
,对U求导,可得到:
将其带入上面P&O的公式,经过变形可得:
如此看来,也不必计算功率了。
而变步长算法,可由下式表达:
变步长方法,作用是:当工作点在最大功率点左边,需要增加工作电压,逼近最大功率点。由于斜率较低,可以多增加步长,加快“爬坡”速度。
电导数法的优点是收敛速度快,而且精度高,但缺点是实现复杂度较高,而且容易受到噪声干扰。
3.2.1 斜率法
斜率法是一种最简单的导数法,其原理是:
-
首先,获取光伏电池输出功率P对输入电压或电流的斜率ΔP/Δd。
-
然后,判断ΔP/Δd的值:如果ΔP/Δd > 0,则说明扰动方向正确,继续扰动;如果ΔP/Δd < 0,则说明扰动方向错误,反向扰动。
-
重复步骤1-2,直到ΔP/Δd = 0,即可找到最大功率点。
斜率法的优点是简单易实现,但缺点是收敛速度慢,而且容易受到噪声干扰。
3.2.2 曲线拟合法
曲线拟合法是一种改进的导数法,其原理是:
-
首先,获取光伏电池输出功率P对输入电压或电流的数据点。
-
然后,对数据点进行曲线拟合,得到光伏电池输出功率P的函数表达式。
-
最后,求解dP/dd = 0,即可得到最大功率点。
曲线拟合法的优点是收敛速度快,而且精度高,但缺点是实现复杂度较高,而且容易受到噪声干扰。
4. MPPT算法性能评估
4.1 跟踪效率
跟踪效率是衡量MPPT算法跟踪最大功率点能力的指标。它表示算法在给定时间内跟踪最大功率点的准确程度。跟踪效率通常使用以下公式计算:
-
跟踪效率 = (实际输出功率 / 最大输出功率) x 100%
其中:
-
实际输出功率:算法在给定时间内输出的功率
-
最大输出功率:光伏阵列在给定时间内可以输出的最大功率
跟踪效率越高,表明算法跟踪最大功率点的能力越强。
4.2 稳定性
稳定性是衡量MPPT算法保持最大功率点稳定的能力。当光伏阵列的辐照度或温度发生变化时,算法应该能够快速稳定地调整输出功率,以确保系统稳定运行。稳定性通常使用以下指标来衡量:
-
稳定时间: 算法从扰动状态稳定到最大功率点所需的时间
-
振荡幅度: 算法在最大功率点附近振荡的幅度
-
稳定性裕度: 算法在最大功率点附近保持稳定的裕度
4.3 响应速度
响应速度是衡量MPPT算法对光伏阵列辐照度或温度变化的响应速度。当光伏阵列的辐照度或温度发生变化时,算法应该能够快速调整输出功率,以最大限度地利用光伏阵列的输出功率。响应速度通常使用以下指标来衡量:
-
上升时间:算法从零功率输出到最大功率输出所需的时间
-
下降时间:算法从最大功率输出到零功率输出所需的时间
-
响应频率:算法对光伏阵列辐照度或温度变化的响应频率
4.4 性能评估指标对比
下表总结了MPPT算法性能评估的指标及其含义:
指标 | 含义 |
---|---|
跟踪效率 | 跟踪最大功率点的准确程度 |
稳定性 | 保持最大功率点稳定的能力 |
响应速度 | 对光伏阵列变化的响应速度 |
稳定时间 | 从扰动状态稳定到最大功率点所需的时间 |
振荡幅度 | 在最大功率点附近振荡的幅度 |
稳定性裕度 | 在最大功率点附近保持稳定的裕度 |
上升时间 | 从零功率输出到最大功率输出所需的时间 |
下降时间 | 从最大功率输出到零功率输出所需的时间 |
响应频率 | 对光伏阵列变化的响应频率 |
4.5 性能评估方法
MPPT控制器性能评估
MPPT控制器的性能通常通过以下指标来评估:
-
跟踪效率:MPPT控制器跟踪最大功率点的准确性。
-
稳定性:MPPT控制器在不同环境条件下保持稳定性的能力。
-
响应速度:MPPT控制器对光伏电池特性变化的响应速度。
5.1 光伏系统集成
MPPT控制器是光伏系统的重要组成部分,负责从光伏电池中提取最大功率。在光伏系统集成中,MPPT控制器通常与以下组件连接:
-
光伏电池阵列:光伏电池阵列是光伏系统的发电单元。
-
负载:负载是光伏系统供电的对象,可以是电网、电池或其他用电设备。
-
逆变器:逆变器将光伏电池阵列产生的直流电转换为交流电,供负载使用。
光伏电池通过降压DCDC主电路为负载供电。DCDC的作用是可以精确控制输出电压。直流系统的负载一般都是阻性负载。有时候可能是电阻串电池的形式。那么负载电流是和负载电压密切相关的,即电压越大、电流越大。而开关电源DCDC的转换效率较高,一般大于70%。因此可通过控制输出电压,改变输出功率,也同时改变了输入功率,即改变了光伏电池的输出功率。
MPPT控制器与光伏电池阵列连接
MPPT控制器与光伏电池阵列的连接方式有串联和并联两种。
-
串联连接:将光伏电池串联连接,提高输出电压。
-
并联连接:将光伏电池并联连接,提高输出电流。
MPPT控制器与负载连接
MPPT控制器与负载的连接方式有直接连接和通过逆变器连接两种。
-
直接连接:MPPT控制器直接为负载供电,适用于直流负载。
-
通过逆变器连接:MPPT控制器通过逆变器为负载供电,适用于交流负载。
MPPT控制器与逆变器连接
MPPT控制器与逆变器的连接方式有直流连接和交流连接两种。
-
直流连接:MPPT控制器直接与逆变器的直流输入端连接。
-
交流连接:MPPT控制器通过逆变器输出的交流电为负载供电。
6. MPPT算法发展趋势
6.1 智能化MPPT算法
随着人工智能技术的发展,智能化MPPT算法应运而生。该算法利用机器学习、神经网络等技术,能够根据光伏系统历史数据和实时运行情况,动态调整MPPT参数,实现更高效的功率追踪。
6.2 混合MPPT算法
混合MPPT算法将多种传统MPPT算法结合起来,取长补短。例如,可以将扰动观测法与导数法结合,在快速跟踪和稳定性之间取得平衡。
6.3 并联MPPT算法
并联MPPT算法适用于多路光伏组件并联连接的系统。该算法将每路组件的MPPT控制器并联起来,实现独立的功率追踪。这样可以减少系统损耗,提高整体发电效率。
表格示例:
算法类型 | 优势 | 劣势 |
---|---|---|
智能化MPPT | 高效、动态调整 | 复杂度高 |
混合MPPT | 取长补短、性能均衡 | 调参难度大 |
并联MPPT | 减少损耗、提高效率 | 成本较高 |
流程图示例:
来源:https://blog.csdn.net/qq_27158179/article/details/82656494
‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ END ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧
推荐阅读
【3】CPU中的程序是怎么运行起来的 必读