解密MPPT工作

Image

最大功率点追踪(MPPT)

1. MPPT算法概述

最大功率点追踪(MPPT)算法是光伏(PV)系统中至关重要的技术,它可以最大化太阳能电池阵列的功率输出。MPPT算法通过实时调整太阳能电池阵列的负载,使其工作在最大功率点(MPP)附近。

MPP是太阳能电池阵列在特定条件下(如辐照度和温度)可以输出的最大功率点。由于太阳能电池阵列的输出特性是非线性的,因此MPP会随着环境条件的变化而变化。MPPT算法通过持续监测电池阵列的输出电压和电流,并调整负载,以确保电池阵列始终工作在MPP附近。

2. MPPT算法理论基础

2.1 光伏电池特性分析

太阳能板也叫光伏电池。是通过光电效应,把光能转换为电能的设备。

先介绍太阳能板的特性。太阳能的额定参数是在地面光伏组件标准测试条件(STC)条件下测量得到的。

STC有三个条件:第一、光线通过大气的实际距离为大气垂直厚度的1.5倍。第二、指标准测试太阳电池的光线的辐照度为1000W/m2。第三、在25ºC的温度下工作。

STC条件会影响光伏电池的开路电压和短路电流。有补偿公式。以下是用Matlab或者Octave绘制光伏电池特性曲线的代码。其中额定值可以通过规格书查找得到,这里影响曲线的可以修改的参数有:

1、到达太阳能板表面的太阳辐射为Sref;

2、太阳能板工作温度为25摄氏度。开路电压Uoc,短路电流Isc,最大功率时电压Um,最大功率时电流Im。a、b、c都是经验值,经过补偿后就可得到修正后的开路电压Uoc_comp和短路电流Isc_comp。

曲线上,每一个点都是光伏电池的工作点。即,光伏电池在正常工作时,假如不是外部因素的改变,得到光伏电池的工作电压,即可在曲线中获得光伏电池的电流、功率。

从电压-功率特性曲线可看出,在当前的环境条件下,太阳能板的最大输出功率为曲线的峰值。这是太阳能板达到最大的能量转换效率。由于能量守恒,太阳能板获得的光能为其输出的电能加上发热量。因此需要通过控制太阳能板的工作电压或者工作电流,让太阳能板工作在最大功率点。这种算法叫最大功率点跟踪(Maximum Power Point Tracking)

温度影响

温度升高,光伏电池的开路电压降低,短路电流略有增加。因此,温度升高会导致输出功率下降。

负载影响

负载阻抗与光伏电池的输出阻抗匹配时,光伏电池输出功率最大。

2.2 最大功率点追踪原理

最大功率点追踪(MPPT)算法的目标是寻找光伏电池在特定工作条件下的最大功率点(MPP)。MPP是光伏电池输出功率与输出电压的关系曲线上的一个点,在此点上,光伏电池输出功率最大。

MPPT算法通过不断调整光伏电池的输出电压或电流,使光伏电池工作在MPP附近,从而获得最大功率输出。

3. MPPT算法实践应用

3.1 MPPT算法分类

MPPT算法主要分为几大类:

固定电压法

 根据经验,单节太阳能板的最大功率点,都在开路电压Uoc的0.78倍附近,所以使用固定输入电压来达到最大功率。

扰动观测法

扰动观测法通过不断扰动光伏电池的输出电压或电流,观察输出功率的变化,从而确定MPP所在的方向。

导数法

导数法通过计算光伏电池输出功率对输出电压或电流的导数,确定MPP所在的方向。

智能化方法

智能化方法利用模糊逻辑、神经网络等技术,通过学习光伏电池的特性和环境参数,预测MPP所在的方向。

3.2 固定电压法

工作温度25℃,光照变化时的光伏特性曲线

下图中,光照设定为1000W/m2,工作温度分别是25℃(蓝色)、45℃(红色)、65℃(橙色)。

上面曲线可知,就算开路电压改变,最大功率点的电压除以曲线的开路电压,结果都是比较接近0.78的。

3.3 扰动观测法

扰动观测法是一种基于试错的MPPT算法,其原理是通过对光伏电池的输出功率进行扰动,并观测扰动后的功率变化,从而找到最大功率点。扰动观测法主要包括两种方法:增量扰动法和微分扰动法。

3.1.1 增量扰动法

增量扰动法是一种最简单的扰动观测法,其原理是:

  1. 首先,选择一个扰动步长Δd。

  2. 然后,对光伏电池的输入电压或电流进行扰动,即d = d + Δd。

  3. 观测扰动后的输出功率P。

  4. 如果P > P0,则说明扰动方向正确,继续扰动;如果P < P0,则说明扰动方向错误,反向扰动。

  5. 重复步骤2-4,直到找到最大功率点。

\left\{\begin{matrix} \frac{dP}{dU}>0:U=U + \bigtriangleup U \\ \frac{dP}{dU}=0:U=U_m \\ \frac{dP}{dU}<0:U=U - \bigtriangleup U \end{matrix}\right.

当dP>dU时,工作点在最大功率点左边,需要增加工作电压。

当dP<dU时,工作点在最大功率点右边,需要减少工作电压。

当dP=dU时,达到最大功率点。

以下两个流程图摘自《独立式光伏发电系统最大功率点跟踪算法研究_张淼》。

从P-V曲线可知,在最大功率点左边,斜率较小。改变固定的电压,功率改变较小。而最大功率点右边,斜率较大。因此可以算法上,在最大功率点左边,选择一个较大的电压步长;而在最大功率点右边,选择一个较小的电压步长。可加快跟踪效果。

实现方法代码全摘自TI的ControlSuite之中的Solar Lib(安装好controlSuite后,路径是ti\controlSUITE\libs\app_libs\solar\v1.2\float\):

//*********** Structure Definition ********//typedef struct {	float32  Ipv;	float32  Vpv;	float32  DeltaPmin;	float32  MaxVolt;	float32  MinVolt;	float32  Stepsize;	float32  VmppOut;	float32  DeltaP;	float32  PanelPower;	float32  PanelPower_Prev;	int16 mppt_enable;	int16 mppt_first;} MPPT_PNO_F;//*********** Structure Init Function ****//void MPPT_PNO_F_init(MPPT_PNO_F *v){	v->Ipv=0;	v->Vpv=0;	v->DeltaPmin=(0.00001);	v->MaxVolt=(0.9);	v->MinVolt=0;	v->Stepsize=(0.002);	v->VmppOut=0;	v->DeltaP=0;	v->PanelPower=0;	v->PanelPower_Prev=0;	v->mppt_enable=1;	v->mppt_first=1;}//*********** Function Definition ********//void MPPT_PNO_F_FUNC(MPPT_PNO_F *v){	if (v->mppt_enable==1)	{		if (v->mppt_first == 1)		{			v->VmppOut= v->Vpv - (0.02);			v->mppt_first=0;			v->PanelPower_Prev=v->PanelPower;		}		else		{			v->PanelPower=(v->Vpv*v->Ipv);			v->DeltaP=v->PanelPower-v->PanelPower_Prev;			if (v->DeltaP > v->DeltaPmin)			{				v->VmppOut=v->Vpv+v->Stepsize;			}			else			{				if (v->DeltaP < -v->DeltaPmin)				{					v->Stepsize=-v->Stepsize;					v->VmppOut=v->Vpv+v->Stepsize;				}			}			v->PanelPower_Prev = v->PanelPower;		}		if(v->VmppOut < v->MinVolt) v->VmppOut = v->MinVolt;		if(v->VmppOut > v->MaxVolt) v->VmppOut = v->MaxVolt;	}}

增量扰动法的优点是简单易实现,但缺点是收敛速度慢,而且容易受到噪声干扰。

3.1.2 微分扰动法

微分扰动法是一种改进的扰动观测法,其原理是:

  1. 首先,计算光伏电池输出功率P对输入电压或电流的微分值dP/dd。

  2. 然后,根据dP/dd的值判断扰动方向:如果dP/dd > 0,则说明扰动方向正确,继续扰动;如果dP/dd < 0,则说明扰动方向错误,反向扰动。

  3. 重复步骤1-2,直到找到最大功率点。

微分扰动法的优点是收敛速度快,而且不容易受到噪声干扰,但缺点是实现复杂度较高。

3.2 电导增量法

最大功率点跟踪实质上就是搜索满足条件的工作点,由于数字控制中检测及控制精度的限制,以近似代替,影响了MPPT算法的精确性。一般而言,由步长决定,当最小步长一定时,MPPT算法的精度就由对的近似程度决定。扰动观测法用两点功率差近似代替微分,即从出发,推演出以功率增量为搜索判据的MPPT算法。

实际上,为了进一步提高MPPT算法对最大功率点的跟踪精度,可以考虑用功率全微分近似代替的MPPT算法,即从出发,推演出以电导和电导变化率之间的关系为搜索判据的MPPT算法,即电导增量法:

导数法是一种基于导数的MPPT算法:

  1. 首先,获取光伏电池输出功率P对输入电压或电流的导数dP/dd。

  2. 然后,求解dP/dd = 0,即可得到最大功率点。

电池输出功率是

P=UI

,对U求导,可得到:

\frac{dP}{dU}=I+U\frac{dI}{dU}

将其带入上面P&O的公式,经过变形可得:

\left\{\begin{matrix} \left ( \frac{dI}{dU}=-I/U \right )or \left ( \left ( dU=0\right ) and\left ( dI=0\right ) \right ):& U= U\\ \left ( \frac{dI}{dU}>-I/U \right )or \left ( \left ( dU=0\right ) and\left ( dI>0\right ) \right ):& U= U + \bigtriangleup U\\ \left ( \frac{dI}{dU}<-I/U \right )or \left ( \left ( dU=0\right ) and\left ( dI<0\right ) \right ):& U= U - \bigtriangleup U\\ \end{matrix}\right.

如此看来,也不必计算功率了。

而变步长算法,可由下式表达:

\left\{\begin{matrix} \left ( \frac{dI}{dU}=-I/U \right )or \left ( \left ( dU=0\right ) and\left ( dI=0\right ) \right ):& U= U\\ \left ( \frac{dI}{dU}>-I/U \right )or \left ( \left ( dU=0\right ) and\left ( dI>0\right ) \right ):& U= U + 4\bigtriangleup U\\ \left ( \frac{dI}{dU}<-I/U \right )or \left ( \left ( dU=0\right ) and\left ( dI<0\right ) \right ):& U= U - \bigtriangleup U\\ \end{matrix}\right.

变步长方法,作用是:当工作点在最大功率点左边,需要增加工作电压,逼近最大功率点。由于斜率较低,可以多增加步长,加快“爬坡”速度。

电导数法的优点是收敛速度快,而且精度高,但缺点是实现复杂度较高,而且容易受到噪声干扰。

3.2.1 斜率法

斜率法是一种最简单的导数法,其原理是:

  1. 首先,获取光伏电池输出功率P对输入电压或电流的斜率ΔP/Δd。

  2. 然后,判断ΔP/Δd的值:如果ΔP/Δd > 0,则说明扰动方向正确,继续扰动;如果ΔP/Δd < 0,则说明扰动方向错误,反向扰动。

  3. 重复步骤1-2,直到ΔP/Δd = 0,即可找到最大功率点。

斜率法的优点是简单易实现,但缺点是收敛速度慢,而且容易受到噪声干扰。

3.2.2 曲线拟合法

曲线拟合法是一种改进的导数法,其原理是:

  1. 首先,获取光伏电池输出功率P对输入电压或电流的数据点。

  2. 然后,对数据点进行曲线拟合,得到光伏电池输出功率P的函数表达式。

  3. 最后,求解dP/dd = 0,即可得到最大功率点。

曲线拟合法的优点是收敛速度快,而且精度高,但缺点是实现复杂度较高,而且容易受到噪声干扰。

4. MPPT算法性能评估

4.1 跟踪效率

跟踪效率是衡量MPPT算法跟踪最大功率点能力的指标。它表示算法在给定时间内跟踪最大功率点的准确程度。跟踪效率通常使用以下公式计算:

 
  1. 跟踪效率 = (实际输出功率 / 最大输出功率) x 100%

其中:

  • 实际输出功率:算法在给定时间内输出的功率

  • 最大输出功率:光伏阵列在给定时间内可以输出的最大功率

跟踪效率越高,表明算法跟踪最大功率点的能力越强。

4.2 稳定性

稳定性是衡量MPPT算法保持最大功率点稳定的能力。当光伏阵列的辐照度或温度发生变化时,算法应该能够快速稳定地调整输出功率,以确保系统稳定运行。稳定性通常使用以下指标来衡量:

  • 稳定时间: 算法从扰动状态稳定到最大功率点所需的时间

  • 振荡幅度: 算法在最大功率点附近振荡的幅度

  • 稳定性裕度: 算法在最大功率点附近保持稳定的裕度

4.3 响应速度

响应速度是衡量MPPT算法对光伏阵列辐照度或温度变化的响应速度。当光伏阵列的辐照度或温度发生变化时,算法应该能够快速调整输出功率,以最大限度地利用光伏阵列的输出功率。响应速度通常使用以下指标来衡量:

  • 上升时间:算法从零功率输出到最大功率输出所需的时间

  • 下降时间:算法从最大功率输出到零功率输出所需的时间

  • 响应频率:算法对光伏阵列辐照度或温度变化的响应频率

4.4 性能评估指标对比

下表总结了MPPT算法性能评估的指标及其含义:

指标

含义

跟踪效率

跟踪最大功率点的准确程度

稳定性

保持最大功率点稳定的能力

响应速度

对光伏阵列变化的响应速度

稳定时间

从扰动状态稳定到最大功率点所需的时间

振荡幅度

在最大功率点附近振荡的幅度

稳定性裕度

在最大功率点附近保持稳定的裕度

上升时间

从零功率输出到最大功率输出所需的时间

下降时间

从最大功率输出到零功率输出所需的时间

响应频率

对光伏阵列变化的响应频率

4.5 性能评估方法

MPPT控制器性能评估

MPPT控制器的性能通常通过以下指标来评估:

  • 跟踪效率:MPPT控制器跟踪最大功率点的准确性。

  • 稳定性:MPPT控制器在不同环境条件下保持稳定性的能力。

  • 响应速度:MPPT控制器对光伏电池特性变化的响应速度。

5.1 光伏系统集成

MPPT控制器是光伏系统的重要组成部分,负责从光伏电池中提取最大功率。在光伏系统集成中,MPPT控制器通常与以下组件连接:

  • 光伏电池阵列:光伏电池阵列是光伏系统的发电单元。

  • 负载:负载是光伏系统供电的对象,可以是电网、电池或其他用电设备。

  • 逆变器:逆变器将光伏电池阵列产生的直流电转换为交流电,供负载使用。

光伏电池通过降压DCDC主电路为负载供电。DCDC的作用是可以精确控制输出电压。直流系统的负载一般都是阻性负载。有时候可能是电阻串电池的形式。那么负载电流是和负载电压密切相关的,即电压越大、电流越大。而开关电源DCDC的转换效率较高,一般大于70%。因此可通过控制输出电压,改变输出功率,也同时改变了输入功率,即改变了光伏电池的输出功率。

MPPT控制器与光伏电池阵列连接

MPPT控制器与光伏电池阵列的连接方式有串联和并联两种。

  • 串联连接:将光伏电池串联连接,提高输出电压。

  • 并联连接:将光伏电池并联连接,提高输出电流。

MPPT控制器与负载连接

MPPT控制器与负载的连接方式有直接连接和通过逆变器连接两种。

  • 直接连接:MPPT控制器直接为负载供电,适用于直流负载。

  • 通过逆变器连接:MPPT控制器通过逆变器为负载供电,适用于交流负载。

MPPT控制器与逆变器连接

MPPT控制器与逆变器的连接方式有直流连接和交流连接两种。

  • 直流连接:MPPT控制器直接与逆变器的直流输入端连接。

  • 交流连接:MPPT控制器通过逆变器输出的交流电为负载供电。

6. MPPT算法发展趋势

6.1 智能化MPPT算法

随着人工智能技术的发展,智能化MPPT算法应运而生。该算法利用机器学习、神经网络等技术,能够根据光伏系统历史数据和实时运行情况,动态调整MPPT参数,实现更高效的功率追踪。

6.2 混合MPPT算法

混合MPPT算法将多种传统MPPT算法结合起来,取长补短。例如,可以将扰动观测法与导数法结合,在快速跟踪和稳定性之间取得平衡。

6.3 并联MPPT算法

并联MPPT算法适用于多路光伏组件并联连接的系统。该算法将每路组件的MPPT控制器并联起来,实现独立的功率追踪。这样可以减少系统损耗,提高整体发电效率。

表格示例:

算法类型

优势

劣势

智能化MPPT

高效、动态调整

复杂度高

混合MPPT

取长补短、性能均衡

调参难度大

并联MPPT

减少损耗、提高效率

成本较高

流程图示例:

来源:https://blog.csdn.net/qq_27158179/article/details/82656494

‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧  END  ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

推荐阅读

【1】jetson nano开发使用的基础详细分享

【2】Linux开发coredump文件分析实战分享

【3】CPU中的程序是怎么运行起来的 必读

【4】cartographer环境建立以及建图测试

【5】设计模式之简单工厂模式、工厂模式、抽象工厂模式的对比

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值