风力发电系统中的最大功率点跟踪(MPPT)技术是一种关键的优化控制策略,旨在通过调节风轮机的转速或桨距角等参数,使风力发电机组在不同风速条件下始终运行在最大功率输出点。以下是MPPT技术的具体实现方法及其相关研究进展的详细说明:
1. MPPT的基本原理
MPPT的核心思想是通过实时调整风力发电系统的运行状态,使其始终处于最大功率点(MPP)。这一过程需要依赖于准确的风速测量和高效的控制算法。
高比例可再生能源接入下电力系统惯量研究综述及展望
2. MPPT算法的主要分类
根据现有研究,MPPT算法可以分为以下几类:
(1) 基于梯度的方法
- 优点:简单易行,通过计算功率对控制参数的梯度来寻找最大功率点。
- 缺点:在风速快速变化时可能出现跟踪不准确的问题。
基于几何平均数的风光互补发电系统MPPT控制方法与流程
(2) 基于扰动观察的方法(P&O)
- 传统P&O方法:通过扰动转子速度并根据功率变化进行调整来达到最大功率点。该方法响应速度较慢,尤其在大惯性风力涡轮机上效果不佳。
- 改进P&O方法:基于升压转换器的感应电流,利用感应电流的微小变化来观察系统功率,从而识别风速变化。在低风速变化条件下采用自适应步长,在高风速变化条件下采用预测模式。
一种风电机组能效分析方法与流程 xjishu.com
(3) 基于模糊逻辑的方法
- 优点:能够处理风速变化的不确定性,提高系统的鲁棒性。
- 缺点:在某些情况下可能需要复杂的模糊规则设计。
一种储能与主控协调的并网点电压主动支 …
(4) 基于智能算法的方法
- 人工神经网络(ANN) :结合ANN和增量导电性(INC-CD)技术,通过仿真验证了其在不同风速条件下的有效性。
- 粒子群优化(PSO) :通过优化粒子群初始化位置,提高最大功率点的跟踪效率。
- 滑模控制(SMC) :结合自适应动态规划和循环神经网络,提出了一种数据驱动的近似最优MPPT方法。
一种基于机理模型和数据驱动的风电功率预测方法及系统与流程
(5) 无传感器方法
- 优点:无需风速传感器,降低了系统复杂性和成本。
- 缺点:可能需要更复杂的算法设计。
3. 具体实现方法
(1) 基于MATLAB/Simulink的建模与仿真
- 通过MATLAB/Simulink平台,可以构建风力发电系统的模型,并实现MPPT算法的仿真。例如,利用风速传感器实时监测风速,发电机状态监测模块测量发电机输出参数,MPPT控制器根据所选算法计算并发出控制指令,驱动发电机调整转速,形成闭环控制。
直驱风力发电 LVRT 低电压穿越 MPPT 风能跟踪 matlab仿真模型- …
(2) 基于永磁同步发电机(PMSG)的MPPT
- 结合扩展卡尔曼滤波器(EKF)和模糊控制系统,通过EKF预测不可确定参数的不确定性,并使用模糊逻辑控制系统(FLC)来控制发电机速度,从而提高MPPT的准确性和输出功率效率。
MPPT最大功率点追踪? - 知乎
(3) 基于电压-电流双环路的MPPT控制策略
- 该策略通过实时检测风速变化,自动调整变流器的控制参数,以实现最大功率点的跟踪。实验结果表明,该策略能够有效提高双馈风力发电系统的效率和稳定性。
(4) 基于模糊推理最优梯度法
- 无需检测风速,在不需要最大功率曲线和风速的情况下,自适应地对风力发电系统进行最大功率点跟踪。该方法通过MATLAB仿真验证了其快速准确地跟踪最大功率的能力。
4. 最新研究进展
- 自适应控制算法:通过结合扭矩电流和速度计算功率,提出了一种自适应控制算法,能够在风速波动条件下追踪风力涡轮机的最大功率点。
- 基于神经网络的MPPT:结合人工神经网络和增量导电性技术,提出了一种新的MPPT方法,能够在不同风速条件下最大化输出功率。
- 基于滑模控制的鲁棒MPPT:结合自适应动态规划和循环神经网络,提出了一种数据驱动的近似最优MPPT方法。
5. 总结
风力发电系统的MPPT技术通过多种算法实现,包括梯度法、扰动观察法、模糊逻辑控制、智能算法等。这些方法各有优缺点,适用于不同的应用场景。近年来,基于智能算法和无传感器方法的研究逐渐增多,为提高风力发电系统的效率和可靠性提供了新的思路和技术支持。
关注博主,有些文章只有粉丝可见!