知识图谱对齐——论文阅读笔记

《Cross-lingual Knowledge Graph Alignment via Graph Matching Neural Network》

基于图匹配神经网络的跨语言知识图谱对齐

摘要

先前的跨语言的知识图谱对齐研究依赖于实体嵌入的思想,,其不能够在两个知识图谱上;此文介绍一种方法,表示其上下文信息的特征实体,主体实体图(局部实体子图),从这个角度来看,知识库的对齐工作可以看做图匹配问题,进一步提出注意力机制的解决方案。

代码: https://github.com/syxu828/Crosslingula-KG-Matching.

引言

多语言图谱代表人类知识架构上得到了很大的提升,这些图谱编码了大量的单语言信息,但是缺少跨语言的研究方法,我们提出的基于上下文信息的图谱方法来解决这个问题,提出了使用新型GNN来把问题转化为图匹配的问题;

image-20210617143140696

模型

image-20210617143125169

我们提出了一种结构,即主题实体图,用来表示给定实体(称为主题实体)与知识库中相邻实体之间的关系。

具体来说,我们首先从g1和g2两个kg中检索勒布朗·詹姆斯的主题实体图。然后,我们提出一个图匹配模型来估计g1和g2描述同一实体的概率。具体来说,匹配模型包括以下四层:

输入表示层:

主要介绍了GCN(图卷积网络):简单叙述其算法步骤

  1. 使用单词为基础的LSTM把v实体转化为初始向量 a v a_v av
  2. 依据边的有向性把节点v的邻居节点分为输入输出
  3. 使用聚合器来汇聚v的输入邻节点特征信息成为单个向量,把每个节点的信息向量输入到全连接网络中,使用均值池化来取得邻域信息;
  4. 使用k-1th 迭代信息与新生成的k th信息,共同输入到神经网络之中,更新节点v的状态
  5. 用3-4步,反复我们更新输出节点
  6. 反复3-5步,形成输出的两个实体嵌入数据集{ e 1 1 , . . . e g 1 1 e^1_1,...e^1_{g1} e11,...eg11}和{} e 1 2 , . . . , e g 2 1 e_1^2,...,e_{g2}^1 e12,...,eg21};
节点(局部)匹配层

首先计算节点直接的余弦相似度,利用相似度作为权重计算整个图的向量:

image-20210617150321524

然后计算向量的匹配利用多视角的余弦匹配函数:

image-20210617150351027
图(全局)匹配层

局部不能代表全局的信息,例如,许多实体只有少数在g1和g2中同时出现的邻居实体。对于这些实体,利用局部匹配信息的模型可能有很高的概率错误地预测这两个图描述不同的主题实体,因为g1和g2中的大多数实体在其嵌入空间中并不接近。

所以加入全局的考量,如果每个节点看成一个匹配状态的话,通过设计一个图上的GCN_2(具有足够数量的跳数)能够编码整个图对之间的全局匹配状态。

我们把特征输入全连接网络,在使用池化形成匹配特征向量。

预测层

使用两个前向神经网络,用sofrmax来分类。

训练和推断

为了训练模型,首先使用启发式方法。先对KG1和KG2粗糙的生成实体嵌入,然后选择十个距离e1最近的e2来构造负例。

实验结果分析

跳跃大小的影响:

实验表明,当λ = 3时,模型的性能最佳。为了更好地理解由于引入了图匹配层,我们的模型可以更好地处理哪种类型的实体,我们分析了模型正确预测而节点匹配预测错误的实体。我们发现图匹配层增强了我们的模型处理两个kg中相邻的实体的能力。对于这类实体,大多数局部匹配信息表明这两个实体是不相关的,但是图匹配层可以通过在整个图中传播最相关的局部匹配信息来缓解这一情况。

关系标签的影响:

提出的主题实体图只保留关系方向,而忽略了关系标签。

(1)关系标签在数据集中以抽象符号表示,这提供了相当有限的关系知识,使模型难以学习它们在两个kg中的对齐;

(2)加入关系标签会显著增加主题实体图的大小,需要更大的跳数和运行时间。

结论

结合实体上下文信息的两种图谱上的的匹配问题转化为图匹配问题

提出了图神经网络的匹配模型,包含图匹配与像素匹配信息。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值