第八章 参数估计——一叶落而知秋
参数估计,主要有两种方式:
- 点估计:
- 估计结果是一个具体值
- eg:估计一个人的身高是170cm
- 点估计精确,但未必可靠
- 区间估计:
- 估计结果是一个区间
- eg:估计一个人的身高是168~172cm之间
- 区间估计更为可靠,但不是很精确
8.1 点估计
计算样本的均值作为总体的均值。
根据中心极限定理可知,多次重复抽样得出的统计量围绕总体参数波动,多个统计量的均值应该等于总体参数。所以,样本统计量理论上是总体参数的无偏估计
8.2 最小二乘估计
最小二乘估计(Least Square Estimation)主要用于线性回归的参数估计。
思想:求一个参数,使得实际值与模型估计值之差达到最小,将其作为参数的估计值。
直线与点的距离有正有负,如果直接求和,容易消除一些距离。因此有两种方式计算距离之和:
- 将每个距离平方之后再求和,这就是最小二乘法(Least Square Estimation),其实就是最小平方和法
- 取每个距离的绝对值再求和,叫最小绝对值法(Least Absolute Values)
如果将点与线的距离按照垂直距离来算,就是另一种估计算法:正交回归(Orthogonal Regression)。