读《白话统计》笔记——第八章

本文是《白话统计》第八章笔记,重点介绍了参数估计的四种方法:点估计、最小二乘估计、最大似然估计和贝叶斯估计。点估计通过样本均值估计总体均值,而区间估计提供更可靠的估计范围。最小二乘估计用于线性回归,最大化实际值与模型估计值之差的平方和。最大似然估计则在已知事件发生时,寻找使似然函数最大的参数。最后,贝叶斯估计将参数视为随机变量,并结合先验概率进行估计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第八章 参数估计——一叶落而知秋

参数估计,主要有两种方式:

  • 点估计:
    • 估计结果是一个具体值
    • eg:估计一个人的身高是170cm
    • 点估计精确,但未必可靠
  • 区间估计:
    • 估计结果是一个区间
    • eg:估计一个人的身高是168~172cm之间
    • 区间估计更为可靠,但不是很精确
8.1 点估计

计算样本的均值作为总体的均值。

根据中心极限定理可知,多次重复抽样得出的统计量围绕总体参数波动,多个统计量的均值应该等于总体参数。所以,样本统计量理论上是总体参数的无偏估计

8.2 最小二乘估计

最小二乘估计(Least Square Estimation)主要用于线性回归的参数估计。

思想:求一个参数,使得实际值与模型估计值之差达到最小,将其作为参数的估计值。

直线与点的距离有正有负,如果直接求和,容易消除一些距离。因此有两种方式计算距离之和:

  • 将每个距离平方之后再求和,这就是最小二乘法(Least Square Estimation),其实就是最小平方和法
  • 取每个距离的绝对值再求和,叫最小绝对值法(Least Absolute Values)

如果将点与线的距离按照垂直距离来算,就是另一种估计算法:正交回归(Orthogonal Regression)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值