算法知识点——(3)监督学习——逻辑回归与线性回归

本文深入探讨了监督学习中的线性回归和逻辑回归。线性回归介绍了原理、误差分析、似然函数、目标函数推导和求解过程。逻辑回归则涉及Logistic分布、分类任务、似然函数、参数更新及其特点。两者的异同点也进行了对比,强调了它们在回归和分类问题上的应用和区别。
摘要由CSDN通过智能技术生成

目录

一、线性回归

1. 原理推导

1.1 算法概述

1.2 误差项分析

1.3 似然函数

1.4 目标函数推导

1.5 线性回归求解

2. 特点

3. 广义线性回归

二、逻辑回归

1. 原理推导

1.1 Logistic 分布

1.2 逻辑回归分类任务

1.3 似然函数

1.4 应用梯度下降求参数

1.5 参数更新

2. 特点

3. 多分类逻辑回归

4. 极大似然函数作为损失函数原因

5. 特征高度相关或者特征重复,会造成怎样的影响?

6. 逻辑回归为什么要对特征进行离散化

7. 逻辑回归是线性模型吗?

8. 逻辑回归最优化过程中如何避免局部最小值

三、逻辑回归相比于线性回归, 有何异同?


一、线性回归

1. 原理推导

1.1 算法概述

给定数据集D = \left\{ {\left( {​{x_i},{y_i}} \right)} \right\}_{i = 1}^mx_i=\left( {​{x_{i1}},{x_{i2}}, \ldots ,{x_{id}}} \right){y_i} \in R(线性回归的输出空间是整个实数空间),其中d是属性维度,m是样本数,

线性回归拟合平面

                                                                                         f\left( {​{x_i}} \right) = {w^T}{x_i}           (1)

1.2 误差项分析

预测值和真实值之间存在差异\varepsilon,对于每个样本:

                                                                                      {y_i} = {w^T}{x_i} + {\varepsilon _i}              (2)

误差{\varepsilon _i}是独立,同分布的,并且服从高斯分布,即:

                                                                  p\left( {​{\varepsilon _i}} \right) = \frac{1}{​{\sqrt {2\pi } \sigma }}\exp \left( { - \frac{​{​{\varepsilon _i}^2}}{​{2{\sigma ^2}}}} \right)            (3)

将(2)代入(3)中,得到在已知参数w和数据w_i的情况下,预测值为y_i的条件概率:

                                                   p\left( {​{y_i}\left| {​{x_i};w} \right.} \right) = \frac{1}{​{\sqrt {2\pi } \sigma }}\exp \left( { - \frac{​{​{​{\left( {​{y_i} - {w^T}{x_i}} \right)}^2}}}{​{2{\sigma ^2}}}} \right)           (4)

1.3 似然函数

引入似然函数的目的:根据样本估计参数值,求解什么样的参数根数据组合后恰好是真实值

 将(4)连乘得到在已知参数和数据的情况下,预测值为的条件概率,这个条件概率在数值上等于,likelihood(w|x,y),也就是在已知现有数据的条件下,w是真正参数的概率,

似然函数

                                                   L\left( w \right) {\rm{ = }}\prod\limits_{i = 1}^m {p\left( {​{y_i}\left| {​{x_i};w} \right.} \right)} = \prod\limits_{i = 1}^m {\frac{1}{​{\sqrt {2\pi } \sigma }}} \exp \left( { - \frac{​{​{​{\left( {​{y_i} - {w^T}{x_i}} \right)}^2}}}{​{2{\sigma ^2}}}} \right)          (5)

似然函数进行log变换目的:由于乘法难解,通过对数可以将乘法转换为加法,简化计算。

对数似然函数

                                                                logL(w)=log\prod_{i=1}^{m}\frac{1}{\sqrt{2\pi }\sigma}exp(-\frac{(y_i-w^Tx_i)^2}{2\sigma^2})               (6)
 

1.4 目标函数推导

对似然函数进行求解,得到目标函数:···

                                                      \begin{array}{l} \ell\left( w \right) = \log \prod\limits_{i = 1}^m {\frac{1}{​{\sqrt {2\pi } \sigma }}} \exp \left( { - \frac{​{​{​{\left( {​{y_i} - {w^T}{x_i}} \right)}^2}}}{​{2{\sigma ^2}}}} \right)\\ = \sum\limits_{i = 1}^m {\log \frac{1}{​{\sqrt {2\pi } \sigma }}} \exp \left( { - \frac{​{​{​{\left( {​{y_i} - {w^T}{x_i}} \right)}^2}}}{​{2{\sigma ^2}}}} \right)\\ = \sum\limits_{i = 1}^m {\log \frac{1}{​{\sqrt {2\pi } \sigma }}} + \sum\limits_{i = 1}^m {log\left( {\exp \left( { - \frac{​{​{​{\left( {​{y_i} - {w^T}{x_i}} \right)}^2}}}{​{2{\sigma ^2}}}} \right)} \right)} \\ = m\log \frac{1}{​{\sqrt {2\pi } \sigma }} - \sum\limits_{i = 1}^m {\frac{​{​{​{\left( {​{y_i} - {w^T}{x_i}} \right)}^2}}}{​{2{\sigma ^2}}}} \\ = m\log \frac{1}{​{\sqrt {2\pi } \sigma }} - \frac{1}{​{​{\sigma ^2}}}\frac{1}{2}\sum\limits_{i = 1}^m {​{​{\left( {​{y_i} - {w^T}{x_i}} \right)}^2}} \end{array}          (6)

省去常数部分,得到目标函数:

                                                   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值