n维向量及其运算、向量线性相关与线性无关
手动反爬虫: 原博地址
知识梳理不易,请尊重劳动成果,文章仅发布在CSDN网站上,在其他网站看到该博文均属于未经作者授权的恶意爬取信息
如若转载,请标明出处,谢谢!
1 向量间的线性关系
向量定义:n个数 a 1 , a 2 . . . a n a_{1},a_{2}...a_{n} a1,a2...an组成的有序数组 ( a 1 , a 2 . . . a n ) (a_{1},a_{2}...a_{n}) (a1,a2...an),按照表示的方式不同可以分为行向量和列向量
线性组合:
β
,
α
1
,
α
2
.
.
.
α
n
\beta,\alpha_{1},\alpha_{2}...\alpha_{n}
β,α1,α2...αn是n维向量,若存在
k
1
,
k
2
,
.
.
.
k
n
k_{1},k_{2},...k_{n}
k1,k2,...kn使得
β
=
k
1
α
1
+
k
2
α
2
+
.
.
.
+
k
n
α
n
\beta = k_{1}\alpha_{1}+k_{2}\alpha_{2}+...+k_{n}\alpha_{n}
β=k1α1+k2α2+...+knαn成立,则成
α
1
,
α
2
.
.
.
α
n
\alpha_{1},\alpha_{2}...\alpha_{n}
α1,α2...αn是
β
\beta
β的线性组合,或者成
β
\beta
β可由
α
1
,
α
2
.
.
.
α
n
\alpha_{1},\alpha_{2}...\alpha_{n}
α1,α2...αn线性表示,其中
k
1
,
k
2
,
.
.
.
k
n
k_{1},k_{2},...k_{n}
k1,k2,...kn被称作为组合系数,系数可以全取0,比如
(
0
0
)
=
0
∗
(
1
2
)
+
0
∗
(
1
0
)
\left(\begin{matrix} 0\\0\end{matrix}\right) = 0*\left(\begin{matrix} 1\\2\end{matrix}\right)+0 *\left(\begin{matrix} 1\\0\end{matrix}\right)
(00)=0∗(12)+0∗(10)
向量性质:
1)零向量可由任意向量组表示。只需要组合系数全部为0即可
2)向量组中任一向量可由向量组进行表示。只需要该向量的组合系数取1,其他的系数取0即可
3)任一向量都可由
ε
1
=
(
1
,
0
,
.
.
.
,
0
)
,
ε
2
=
(
0
,
1
,
.
.
.
,
0
)
,
.
.
.
,
ε
n
=
(
0
,
0
,
.
.
.
,
1
)
\varepsilon_{1} =(1,0,...,0), \varepsilon_{2} =(0,1,...,0),...,\varepsilon_{n} =(0,0,...,1)
ε1=(1,0,...,0),ε2=(0,1,...,0),...,εn=(0,0,...,1)表示,这n个向量组被称作n维单位向量组或者n维基本单位向量组
( 1 2 3 ) = 1 ∗ ( 1 0 0 ) + 2 ∗ ( 0 1 0 ) + 3 ∗ ( 0 0 1 ) \left(\begin{matrix} 1\\2\\3\end{matrix}\right) = 1*\left(\begin{matrix} 1\\0\\0\end{matrix}\right)+2 *\left(\begin{matrix} 0\\1\\0\end{matrix}\right)+3 *\left(\begin{matrix} 0\\0\\1\end{matrix}\right) ⎝⎛123⎠⎞=1∗⎝⎛100⎠⎞+2∗⎝⎛010⎠⎞+3∗⎝⎛001⎠⎞
例题: β = ( − 3 , 2 , − 4 ) , α 1 = ( 1 , 0 , 1 ) , α 2 = ( 2 , 1 , 0 ) , α 3 = ( − 1 , 1 , − 2 ) \beta = (-3,2,-4),\alpha_{1}=(1,0,1),\alpha_{2} = (2,1,0),\alpha_{3} = (-1,1,-2) β=(−3,2,−4),α1=(1,0,1),α2=(2,1,0),α3=(−1,1,−2),请问 β \beta β 能否使用 α 1 , α 2 , α 3 \alpha_{1},\alpha_{2},\alpha_{3} α1,α2,α3进行表示?
解:直接设
β
=
k
1
α
1
+
k
2
α
2
+
k
3
α
3
\beta = k_{1}\alpha_{1}+k_{2}\alpha_{2}+k_{3}\alpha_{3}
β=k1α1+k2α2+k3α3,然后将向量带入
(
−
3
,
2
,
−
4
)
=
k
1
(
1
,
0
,
1
)
+
k
2
(
2
,
1
,
0
)
+
k
3
(
−
1
,
1
,
−
2
)
⇒
{
k
1
+
2
k
2
−
k
3
=
−
3
k
2
+
k
3
=
2
k
1
−
2
k
3
=
−
4
⇒
{
k
1
=
2
k
2
=
−
1
k
3
=
3
(-3,2,-4) = k_{1} (1,0,1) + k_{2} (2,1,0) + k_{3} (-1,1,-2) \Rightarrow \begin{cases} k_{1} +2k_{2}-k_{3} =-3 \\ k_{2} +k_{3} =2\\ k_{1} -2k_{3} = -4 \end{cases} \Rightarrow \begin{cases} k_{1} =2 \\ k_{2}=-1\\ k_{3} = 3 \end{cases}
(−3,2,−4)=k1(1,0,1)+k2(2,1,0)+k3(−1,1,−2)⇒⎩⎪⎨⎪⎧k1+2k2−k3=−3k2+k3=2k1−2k3=−4⇒⎩⎪⎨⎪⎧k1=2k2=−1k3=3
β
=
2
α
1
−
α
2
+
3
α
3
\beta = 2\alpha_{1}-\alpha_{2}+3\alpha_{3}
β=2α1−α2+3α3
规律:通过上面的例题,发现不管给出的向量是行还是列, α 1 , α 2 . . . α n \alpha_{1},\alpha_{2}...\alpha_{n} α1,α2...αn按列均作为方程组的系数, β \beta β按列作为右端常数项(对比一下上面的方程组)
进一步发现: β \beta β 能否使用 α 1 , α 2 , α 3 \alpha_{1},\alpha_{2},\alpha_{3} α1,α2,α3进行表示 就变成了 方程组是否有解
2 向量组的等价
前面针对于矩阵的等价是指:矩阵A经过初等变换后可以变成矩阵B,则称矩阵A与矩阵B等价(矩阵的秩为:非零子式的最高阶数)
向量组等价:
α
1
,
α
2
.
.
.
α
m
\alpha_{1},\alpha_{2}...\alpha_{m}
α1,α2...αm 和
β
1
,
β
2
.
.
.
β
n
\beta_{1},\beta_{2}...\beta_{n}
β1,β2...βn同维,若两个向量组可以相互线性表示,则称两个向量组等价,记作
{
α
1
,
α
2
.
.
.
α
m
}
⟺
{
β
1
,
β
2
.
.
.
β
n
}
\{\alpha_{1},\alpha_{2}...\alpha_{m}\} \iff \{\beta_{1},\beta_{2}...\beta_{n}\}
{α1,α2...αm}⟺{β1,β2...βn}
1)反身性:
{
α
1
,
α
2
.
.
.
α
m
}
⟺
{
α
1
,
α
2
.
.
.
α
m
}
\{\alpha_{1},\alpha_{2}...\alpha_{m}\} \iff\{\alpha_{1},\alpha_{2}...\alpha_{m}\}
{α1,α2...αm}⟺{α1,α2...αm}
2)对应性: 若
{
α
1
,
α
2
.
.
.
α
m
}
⟺
{
β
1
,
β
2
.
.
.
β
n
}
\{\alpha_{1},\alpha_{2}...\alpha_{m}\} \iff \{\beta_{1},\beta_{2}...\beta_{n}\}
{α1,α2...αm}⟺{β1,β2...βn},则
{
β
1
,
β
2
.
.
.
β
n
}
⟺
{
α
1
,
α
2
.
.
.
α
m
}
\{\beta_{1},\beta_{2}...\beta_{n}\}\iff \{\alpha_{1},\alpha_{2}...\alpha_{m}\}
{β1,β2...βn}⟺{α1,α2...αm}
3)传递性:若
{
α
1
,
α
2
.
.
.
α
m
}
⟺
{
β
1
,
β
2
.
.
.
β
n
}
\{\alpha_{1},\alpha_{2}...\alpha_{m}\} \iff \{\beta_{1},\beta_{2}...\beta_{n}\}
{α1,α2...αm}⟺{β1,β2...βn},
{
β
1
,
β
2
.
.
.
β
n
}
⟺
{
γ
1
,
γ
2
.
.
.
γ
s
}
\{\beta_{1},\beta_{2}...\beta_{n}\}\iff \{\gamma_{1},\gamma_{2}...\gamma_{s}\}
{β1,β2...βn}⟺{γ1,γ2...γs},则可推出
{
α
1
,
α
2
.
.
.
α
m
}
⟺
{
γ
1
,
γ
2
.
.
.
γ
s
}
\{\alpha_{1},\alpha_{2}...\alpha_{m}\} \iff \{\gamma_{1},\gamma_{2}...\gamma_{s}\}
{α1,α2...αm}⟺{γ1,γ2...γs}
3 线性相关与线性无关
α 1 , α 2 . . . α n \alpha_{1},\alpha_{2}...\alpha_{n} α1,α2...αn是n个m维向量,若存在一组不全为0的 k 1 , k 2 , . . . k n k_{1},k_{2},...k_{n} k1,k2,...kn使得 k 1 α 1 + k 2 α 2 + . . . + k n α n = 0 k_{1}\alpha_{1}+k_{2}\alpha_{2}+...+k_{n}\alpha_{n} = 0 k1α1+k2α2+...+knαn=0 ,则称 α 1 , α 2 . . . α n \alpha_{1},\alpha_{2}...\alpha_{n} α1,α2...αn是线性相关
线性无关:1)不是相关;2)找不到一组不全为0的 k 1 , k 2 , . . . k n k_{1},k_{2},...k_{n} k1,k2,...kn,3)若上述的等式成立,则说明 k 1 , k 2 , . . . k n k_{1},k_{2},...k_{n} k1,k2,...kn必全为0
性质:
1) 向量组中两向量成比例,则向量组是线性相关。按照比例将成比例的两个向量值化为0,其余的组合系数为0即可
−
1
∗
(
1
2
)
+
1
2
∗
(
2
4
)
+
0
∗
(
0
1
)
+
0
∗
(
3
4
)
=
0
-1*\left(\begin{matrix} 1\\2\end{matrix}\right)+\frac{1}{2} *\left(\begin{matrix} 2\\4\end{matrix}\right)+0 *\left(\begin{matrix} 0\\1\end{matrix}\right) + 0* \left(\begin{matrix} 3\\4\end{matrix}\right)= 0
−1∗(12)+21∗(24)+0∗(01)+0∗(34)=02)含有零向量的任一向量组必线性相关。
0
α
1
+
0
α
2
+
.
.
.
+
1
∗
0
=
0
0\alpha_{1}+0\alpha_{2}+...+1*0 = 0
0α1+0α2+...+1∗0=0
3)一个零向量必线性相关
4) 一个非零向量必线性无关
5)一个向量
α
\alpha
α如果线性相关
⟺
α
=
0
\iff \alpha = 0
⟺α=0
例题,若 α 1 , α 2 . . . α r \alpha_{1},\alpha_{2}...\alpha_{r} α1,α2...αr线性相关,证明 α 1 , α 2 . . . α r , α r + 1 , . . . , α s \alpha_{1},\alpha_{2}...\alpha_{r},\alpha_{r+1},...,\alpha_{s} α1,α2...αr,αr+1,...,αs也是线性相关
解: 已知 α 1 , α 2 . . . α r \alpha_{1},\alpha_{2}...\alpha_{r} α1,α2...αr线性相关 ⟺ k 1 α 1 + k 2 α 2 + . . . + k r α r = 0 \iff k_{1}\alpha_{1}+k_{2}\alpha_{2}+...+k_{r}\alpha_{r} = 0 ⟺k1α1+k2α2+...+krαr=0,其中 k 1 , k 2 , . . . k r k_{1},k_{2},...k_{r} k1,k2,...kr不全为0,
预证明
α
1
,
α
2
.
.
.
α
r
,
α
r
+
1
,
.
.
.
,
α
s
\alpha_{1},\alpha_{2}...\alpha_{r},\alpha_{r+1},...,\alpha_{s}
α1,α2...αr,αr+1,...,αs也是线性相关,则需要
k
1
α
1
+
k
2
α
2
.
.
.
k
r
α
r
+
k
r
+
1
α
r
+
1
,
.
.
.
,
+
k
s
α
s
=
0
,
k
1
,
k
2
,
.
.
.
k
r
,
k
r
+
1
,
.
.
.
,
k
s
不
全
为
0
k_{1}\alpha_{1}+k_{2}\alpha_{2}...k_{r}\alpha_{r}+k_{r+1}\alpha_{r+1},...,+k_{s}\alpha_{s} = 0, k_{1},k_{2},...k_{r},k_{r+1},...,k_{s}不全为0
k1α1+k2α2...krαr+kr+1αr+1,...,+ksαs=0,k1,k2,...kr,kr+1,...,ks不全为0只需要将下标在r后的k值全都赋值等于0即可
6)上述例子可以推出:部分组线性相关
⇒
\Rightarrow
⇒ 全部组线性相关;全体组线性无关
⇒
\Rightarrow
⇒ 部分组线性无关
7) 无关的向量组,接长向量组也是线性无关的;接长向量组是线性相关的,那么截短的向量组也是线性相关的
8) n个n维向量(向量的个数等于向量的维数),若构成的行列式
D
≠
0
D \not=0
D=0,可得出向量组线性无关;
D
=
0
D =0
D=0,向量组线性相关
(
1
,
0
,
3
)
,
(
2
,
1
,
1
)
,
(
1
,
1
,
0
)
⇒
∣
1
0
3
1
1
1
1
1
0
∣
(1,0,3),(2,1,1),(1,1,0) \Rightarrow \begin{vmatrix}1 & 0 & 3 \\ 1 & 1 & 1 \\ 1&1 & 0 \end{vmatrix}
(1,0,3),(2,1,1),(1,1,0)⇒∣∣∣∣∣∣111011310∣∣∣∣∣∣
9)n个单位向量组线性无关
例题,判断向量组$(1,0,-1),(-1,-1,2),(2,3,-5)是否线性相关?
解:直接按照定义,假设存在
k
1
,
k
2
,
k
3
k_{1},k_{2},k_{3}
k1,k2,k3,使得
k
1
α
1
+
k
2
α
2
+
k
3
α
3
=
0
k_{1}\alpha_{1}+k_{2}\alpha_{2}+k_{3}\alpha_{3} = 0
k1α1+k2α2+k3α3=0,然后带入向量组数组,就变成解方程组了
{
k
1
−
k
2
+
2
k
3
=
0
−
k
2
+
3
k
3
=
0
−
k
1
+
2
k
2
−
5
k
3
=
0
⇒
{
k
1
=
k
3
k
2
=
3
k
3
,
假
定
k
=
1
,
则
说
明
存
在
不
全
为
0
的
值
使
得
式
子
为
0
⇒
线
性
相
关
\begin{cases} k_{1} -k_{2} + 2 k_{3} =0 \\ -k_{2} + 3k_{3} =0\\ -k_{1} + 2 k_{2} -5k_{3} = 0 \end{cases} \Rightarrow \begin{cases} k_{1} = k_{3} \\ k_{2} =3k_{3} \end{cases},假定k=1,则说明存在不全为0的值使得式子为0 \Rightarrow 线性相关
⎩⎪⎨⎪⎧k1−k2+2k3=0−k2+3k3=0−k1+2k2−5k3=0⇒{k1=k3k2=3k3,假定k=1,则说明存在不全为0的值使得式子为0⇒线性相关
可以发现这里判断向量组线性相关还是线性无关的条件就变成了判断方程是够有非零解的问题,对照前面刚好也有一个类似的判定,是用来判定一个向量是否可以由其它向量组进行表示。
区别:
- 线性组合 ⟺ \iff ⟺ 方程有解
- 不是线性组合 ⟺ \iff ⟺ 方程无解
- 向量组线性相关 ⟺ \iff ⟺ 方程有非零解
- 向量组线性无关 ⟺ \iff ⟺ 方程只有零解
4 定理
1)
α
1
,
α
2
.
.
.
α
s
\alpha_{1},\alpha_{2}...\alpha_{s}
α1,α2...αs线性相关
⟺
\iff
⟺ 至少一个向量可由其余向量表示
2)
α
1
,
α
2
.
.
.
α
s
\alpha_{1},\alpha_{2}...\alpha_{s}
α1,α2...αs线性无关,
α
1
,
α
2
.
.
.
α
s
,
β
\alpha_{1},\alpha_{2}...\alpha_{s},\beta
α1,α2...αs,β线性相关,则
β
\beta
β可由
α
1
,
α
2
.
.
.
α
s
\alpha_{1},\alpha_{2}...\alpha_{s}
α1,α2...αs唯一线性表示
证明:
先证可线性表示
α
1
,
α
2
.
.
.
α
s
,
β
\alpha_{1},\alpha_{2}...\alpha_{s},\beta
α1,α2...αs,β线性相关,则存在不全为零的
k
1
,
k
2
,
.
.
.
k
s
+
1
k_{1},k_{2},...k_{s+1}
k1,k2,...ks+1,使得
k
1
α
1
+
k
2
α
2
+
.
.
.
+
k
s
α
s
+
k
s
+
1
β
=
0
k_{1}\alpha_{1}+k_{2}\alpha_{2}+...+k_{s}\alpha_{s} + k_{s+1}\beta= 0
k1α1+k2α2+...+ksαs+ks+1β=0假使这里的
k
s
+
1
=
0
k_{s+1} = 0
ks+1=0,则得到
k
1
α
1
+
k
2
α
2
+
.
.
.
+
k
s
α
s
=
0
k_{1}\alpha_{1}+k_{2}\alpha_{2}+...+k_{s}\alpha_{s} = 0
k1α1+k2α2+...+ksαs=0,则
k
1
,
k
2
,
.
.
.
k
s
k_{1},k_{2},...k_{s}
k1,k2,...ks中必存在一个不为0的数,然而却又和
α
1
,
α
2
.
.
.
α
s
\alpha_{1},\alpha_{2}...\alpha_{s}
α1,α2...αs线性无关相矛盾,所以拒绝假使,只能是
k
s
+
1
≠
0
k_{s+1} \not= 0
ks+1=0,这时候同时除于这个不为0的系数后,将
β
\beta
β移到另一边就实现了
β
\beta
β由
α
1
,
α
2
.
.
.
α
s
\alpha_{1},\alpha_{2}...\alpha_{s}
α1,α2...αs线性表示
再证唯一性
假设存在两组系数使得
β
=
m
1
α
1
+
m
2
α
2
+
.
.
.
+
m
s
α
s
;
β
=
n
1
α
1
+
n
2
α
2
+
.
.
.
+
n
s
α
s
\beta = m_{1}\alpha_{1}+m_{2}\alpha_{2}+...+m_{s}\alpha_{s};\beta = n_{1}\alpha_{1}+n_{2}\alpha_{2}+...+n_{s}\alpha_{s}
β=m1α1+m2α2+...+msαs;β=n1α1+n2α2+...+nsαs,两式子相减就得到
(
m
1
−
n
1
)
α
1
+
(
m
2
−
n
2
)
α
2
+
.
.
.
+
(
m
s
−
n
s
)
α
s
=
0
(m_{1}-n_{1})\alpha_{1}+(m_{2}-n_{2})\alpha_{2}+...+(m_{s}-n_{s})\alpha_{s}=0
(m1−n1)α1+(m2−n2)α2+...+(ms−ns)αs=0,根据
α
1
,
α
2
.
.
.
α
s
\alpha_{1},\alpha_{2}...\alpha_{s}
α1,α2...αs线性无关,所以可推出
m
i
−
n
i
=
0
⇒
m
i
=
n
i
m_{i} - n_{i} = 0 \Rightarrow m_{i} = n_{i}
mi−ni=0⇒mi=ni,故只存在唯一值
3)替换定理: α 1 , α 2 . . . α s \alpha_{1},\alpha_{2}...\alpha_{s} α1,α2...αs线性无关,可由 β 1 , . . . , β t \beta_{1},...,\beta_{t} β1,...,βt表示,则 s < = t s <= t s<=t
这里举的例子就是小王、小李、小张的问题,都拿出他们爸爸的照片,如果说都拿出对应父亲的照片,那么自然他们的父亲就可以来代替儿子,如果一旦说只有两张不同,小张发现小王的爸爸老王的照片竟然和自己的父亲一样,问题就大了,所以不能小于,可以等于也可以大于,这个大于的理解是可以拿出多张父亲的照片也可以把母亲的照片也拿上。这个例子就可以很容易的理解这个替换定理
4) 替换定理的逆否命题: α 1 , α 2 . . . α s \alpha_{1},\alpha_{2}...\alpha_{s} α1,α2...αs可以由 β 1 , . . . , β t \beta_{1},...,\beta_{t} β1,...,βt表示,且 s > t s > t s>t,则 α 1 , α 2 . . . α s \alpha_{1},\alpha_{2}...\alpha_{s} α1,α2...αs线性相关
5)推论:若m>n(向量的个数大于向量的维数), m个线性n维向量组线性相关;n+1个n维向量一定线性相关
6)推论:等价的线性无关组含向量的个数是相同的。相当于是 s < = t s <= t s<=t, s > = t s >= t s>=t ,最后推出 s = t s= t s=t