向量组相关定理及其推论

1.相关定理及推论

命题一:设向量组 α 1 , ⋯   , α s \alpha_{1}, \cdots, \alpha_{s} α1,,αs线性无关,则向量 β \beta β可以由 α 1 , ⋯   , α s \alpha_{1}, \cdots, \alpha_{s} α1,,αs线性表示的充分必要条件是 α 1 , ⋯   , α s , β \alpha_{1}, \cdots, \alpha_{s},\beta α1,,αs,β线性相关。

证明:必要性是显然的,下面证明充分性:
α 1 , ⋯   , α s , β \alpha_{1}, \cdots, \alpha_{s},\beta α1,,αs,β线性相关,则 K K K中有不全为零的数 k 1 , k 2 , ⋯   , k s , , l k_{1}, k_{2}, \cdots, k_{s},, l k1,k2,,ks,,l,使得
k 1 α 1 + k 2 α 2 + ⋯ + k s α s + l β = 0 k_{1} \boldsymbol{\alpha}_{1}+k_{2} \boldsymbol{\alpha}_{2}+\cdots+k_{s}\boldsymbol{\alpha}_{s}+{l} \boldsymbol{\beta}=\mathbf{0} k1α1+k2α2++ksαs+lβ=0
假如 l = 0 l=0 l=0,则 k 1 , k 2 , ⋯   , k s k_{1}, k_{2}, \cdots, k_{s} k1,k2,,ks不全为零,并且从(1)式得
k 1 α 1 + k 2 α 2 + ⋯ + k s α s = 0 k_{1} \boldsymbol{\alpha}_{1}+k_{2} \boldsymbol{\alpha}_{2}+\cdots+k_{s}\boldsymbol{\alpha}_{s}=\mathbf{0} k1α1+k2α2++ksαs=0
于是 α 1 , ⋯   , α s \alpha_{1}, \cdots, \alpha_{s} α1,,αs线性相关。这与已知条件矛盾,于是 l ≠ 0 l \neq 0 l=0
从而由上式得
β = − k 1 l a 1 − k 2 l α 2 − ⋯ − k 3 l α s \boldsymbol{\beta}=-\frac{k_{1}}{l} \boldsymbol{a}_{1}-\frac{k_{2}}{l} \boldsymbol{\alpha}_{2}-\cdots-\frac{k_{3}}{l} \boldsymbol{\alpha}_{s} β=lk1a1lk2α2lk3αs

推论一:设向量组 α 1 , ⋯   , α s \alpha_{1}, \cdots, \alpha_{s} α1,,αs线性无关,则向量 β \beta β不可以由 α 1 , ⋯   , α s \alpha_{1}, \cdots, \alpha_{s} α1,,αs线性表示的充分必要条件是 α 1 , ⋯   , α s , β \alpha_{1}, \cdots, \alpha_{s},\beta α1,,αs,β线性无关。

注解:这里讨论的是 α 1 , ⋯   , α s \alpha_{1}, \cdots, \alpha_{s} α1,,αs线性无关的情况,对于其线性有关的情况,则是到下面的极大线性无关组中去考虑,也就是找到线性有关的向量组里面最大的那个无关组来进行证明。

命题二 β \beta β可以由向量组 α 1 , ⋯   , α s \alpha_{1}, \cdots, \alpha_{s} α1,,αs线性表示当且仅当 β \beta β可以由 α 1 , ⋯   , α s \alpha_{1}, \cdots, \alpha_{s} α1,,αs的一个极大线性无关组线性表示。

命题三:设向量组 β 1 , β 2 , ⋯   , β r \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{r} β1,β2,,βr可以由向量组 α 1 , α 2 ⋯   , α s \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2} \cdots, \boldsymbol{\alpha}_{s} α1,α2,αs线性表示,如果 r > s r>s r>s,那么 β 1 , β 2 , ⋯   , β r \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{r} β1,β2,,βr线性相关。

证明:为了证明 β 1 , β 2 , ⋯   , β r \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{r} β1,β2,,βr线性相关,需要找到一组不全为零的数 k 1 , k 2 , ⋯   , k r k_{1}, k_{2}, \cdots, k_{r} k1,k2,,kr,使得
k 1 β 1 + k 2 β 2 + ⋯ + k r β r = 0 k_{1} \boldsymbol{\beta}_{1}+k_{2} \boldsymbol{\beta}_{2}+\cdots+k_{r} \boldsymbol{\beta}_{r}=\mathbf{0} k1β1+k2β2++krβr=0
为此,考虑线性组合 x 1 β 1 + x 2 β 2 + ⋯ + x r β r x_{1} \boldsymbol{\beta}_{1}+x_{2} \boldsymbol{\beta}_{2}+\cdots+x_{r}\boldsymbol{\beta}_{r} x1β1+x2β2++xrβr

β 1 = a 11 α 1 + a 21 a 2 + ⋯ + a 31 a s β 2 = a 12 α 1 + a 22 a 2 + ⋯ + a 12 a 3 ⋯ ⋯ ⋯ β r = a 1 r α 1 + a 2 r α 2 + ⋯ + a x α s \begin{aligned} &\boldsymbol{\beta}_{1}=a_{11} \boldsymbol{\alpha}_{1}+a_{21} \boldsymbol{a}_{2}+\cdots+a_{31} \boldsymbol{a}_{s}\\ &\begin{array}{l} \boldsymbol{\beta}_{2}=a_{12} \boldsymbol{\alpha}_{1}+a_{22} \boldsymbol{a}_{2}+\cdots+a_{12} \boldsymbol{a}_{3} \\ \cdots \quad \cdots \quad \cdots \\ \boldsymbol{\beta}_{r}=a_{1 r} \boldsymbol{\alpha}_{1}+a_{2 r} \boldsymbol{\alpha}_{2}+\cdots+a_{x} \boldsymbol{\alpha}_{s} \end{array} \end{aligned} β1=a11α1+a21a2++a31asβ2=a12α1+a22a2++a12a3βr=a1rα1+a2rα2++axαs
带入后可得下列齐次线性方程组

a 11 x 1 + a 12 x 2 + ⋯ + a 1 r x r = 0 a 21 x 1 + a 22 x 2 + ⋯ + a 2 r x r = 0 … … … … … a s 1 x 1 + a s 2 x 2 + ⋯ + a s r x r = 0 \begin{array}{l} a_{11} x_{1}+a_{12} x_{2}+\dots+a_{1 r} x_{r}=0 \\ a_{21} x_{1}+a_{22} x_{2}+\dots+a_{2 r} x_{r}=0 \\ \dots \quad \dots \quad \dots \quad \dots \quad \dots \\ a_{s 1} x_{1}+a_{s 2} x_{2}+\dots+a_{s r} x_{r}=0 \end{array} a11x1+a12x2++a1rxr=0a21x1+a22x2++a2rxr=0as1x1+as2x2++asrxr=0

由已知条件 s < r s<r s<r,因此线性方程组有非零解,只需要取其中一个非零解,即可得 β 1 , β 2 , ⋯   , β r \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{r} β1,β2,,βr线相关。

注解:注意这里并没有要求向量组 α \alpha α是线性无关

推论二:设向量组 β 1 , β 2 , ⋯   , β r \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{r} β1,β2,,βr可以由向量组 α 1 , α 2 , ⋯   , α s \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{s} α1,α2,,αs线性表示,如果 β 1 , β 2 , ⋯   , β r \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{r} β1,β2,,βr线性无关,那么 r ⩽ s r \leqslant s rs 这个不等式证明经常用

注解:这个是上个命题的逆否命题

命题四:如果向量组 ( I ) (I) (I)可以由向量组 ( I I ) (II) (II)线性表示,那么
( I ) 的 秩 ⩽ ( I I ) 的 秩 (I)的秩 \leqslant (II)的秩 (I)(II)

证明:设 α 1 , α 2 , ⋯   , α s \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{s} α1,α2,,αs ( I ) (I) (I)的一个极大线性无关组, β 1 , ⋯   , β r \boldsymbol{\beta}_{1}, \cdots, \boldsymbol{\beta}_{r} β1,,βr ( I I ) (II) (II)的一个极大线性无关组。则 α 1 , α 2 , ⋯   , α s \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{s} α1,α2,,αs可以由 ( I ) (I) (I)线性表示,而 ( I ) (I) (I)又可以由向量组 ( I I ) (II) (II)线性表示, ( I I ) (II) (II)又可以由 β 1 , ⋯   , β r \boldsymbol{\beta}_{1}, \cdots, \boldsymbol{\beta}_{r} β1,,βr线性表示,因此 α 1 , α 2 , ⋯   , α s \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{s} α1,α2,,αs可以由 β 1 , ⋯   , β r \boldsymbol{\beta}_{1}, \cdots, \boldsymbol{\beta}_{r} β1,,βr线性表示,所以
( I ) 的 秩 ⩽ ( I I ) 的 秩 (I)的秩 \leqslant (II)的秩 (I)(II)


延伸组和缩短组
如果向量组线性无关,那么把每个向量填上 m m m个分量(所添分量的位置对于每个向量都一样)得到的延伸组也线性无关

证明:设 α 1 , ⋯   , α s \boldsymbol{\alpha}_{1}, \cdots, \boldsymbol{\alpha}_{s} α1,,αs的一个延伸组为 α ~ 1 , ⋯   , α ~ s \tilde{\boldsymbol{\alpha}}_{1}, \cdots, \tilde{\boldsymbol{\alpha}}_{s} α~1,,α~s,则从
k 1 α ~ 1 + ⋯ + k s a ~ s = 0 k_{1} \tilde{\boldsymbol{\alpha}}_{1}+\cdots+k_{s} \tilde{\boldsymbol{a}}_{s}=\mathbf{0} k1α~1++ksa~s=0
可得出
k 1 α 1 + ⋯ + k s α s = 0 k_{1} \boldsymbol{\alpha}_{1}+\cdots+k_{s} \boldsymbol{\alpha}_{s}=\mathbf{0} k1α1++ksαs=0
α 1 , ⋯   , α s \boldsymbol{\alpha}_{1}, \cdots, \boldsymbol{\alpha}_{s} α1,,αs线性无关,则从上式得 k 1 = ⋯ = k s = 0 k_{1}=\dots=k_{s}=0 k1==ks=0
从而 α ~ 1 , ⋯   , α ~ s \tilde{\boldsymbol{\alpha}}_{1}, \cdots, \tilde{\boldsymbol{\alpha}}_{s} α~1,,α~s也线性无关

推论:如果向量组线性相关,那么把每个向量去掉 m m m个分量(去掉的分量的位置对于每个向量都一样)得到的缩短组也线性相关
(这是上面命题的逆否命题)


一个总结:

  • 如果向量组的一个部分组线性相关,那么整个向量组也线性相关。如果向量组线性无关,那么它的任何一个部分组也线性无关

  • 如果向量组线性无关,那么把每个向量填上m个分量(所添的分量的位置对于每个向量都一样)得到的延伸组也线性无关

    如果向量线性相关,那么把每个向量去掉m个分量(去掉的分量的位置对于每个向量都一样)得到的缩短组也线性相关

  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值