临床统计分析--2差异性检验方法总结

一、单样本(一种药物、一个自变量)

单样本均数比较是指比较一个定量样本的均值与某个特定值(通常是一个理论值、标准值或对照值)之间是否存在显著差异。
例如,假设我们要研究某新开发的减肥药对体重的影响。我们有一组数据,记录了30名志愿者在使用这种减肥药三个月后的体重变化。我们想要知道这组志愿者的平均体重变化是否与“无变化”(即体重变化为0)有显著差异。

如果这组数据的分布满足正态性,我们可以使用单样本t检验来进行研究;

如果数据不满足正态性,我们可以使用单样本Wilcoxon检验来进行研究。

二、两样本(两种药物、两个自变量)

1、两独立样本:比较两种不同药物在治疗相同疾病时的疗效,一个群体接受药物A治疗,另一个群体接受药物B治疗,疗效是数值变量

2、两配对样本设计:比较同一患者在接受两种不同手术治疗前后的血糖水平变化

三、多样本(多种药物or不同剂量,就是多自变量)

1、完全随机设计

研究对象随机分配到多个处理组:

使用方差分析(满足正态性和方差齐性)或Kruskal-Wallis H检验(不满足正态性和方差齐性)

2、随机区组设计:考虑非处理因素,将实验对象配成区组,再随机分配到处理组。

使用方差分析(满足正态性和方差齐性)或Friedman秩检验(不满足正态性和方差齐性)

例如研究不同饮食对青少年身高增长的影响。根据性别、体重等非处理因素将青少年配成区组,然后在每个区组内随机分配到不同的饮食组。

3、重复测量设计:

重复测量同一组对象的多个指标:

如果数据满足正态性和方差齐性,并且满足球对称假设,使用重复测量方差分析来比较不同运动强度下的心率差异;

如果不满足这些条件,可以使用Greenhouse-Geisser或Huynh-Feldt校正后的结果进行分析。

四、定性资料

1、针对二分类变量:四格表

(1)配对样本:同一样本或对象在不同条件下的结果--McNemar检验

(2)非配对样本:比较不同样本或对象在不同条件下的结果

2、针对不全是二分类变量:多行多列(RXC)表

在R×C表资料的分析中,如果所有的期望频数(T)都大于1且小于5,并且这样的格子数占总格子数的比例小于20%,我们可以使用Pearson卡方检验来分析数据;

如果格子数的比例超过20%,我们应使用Yates校正卡方检验。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值