T检验:两样本数据的差异性

在研究TCGA的RNAseq数据时,T检验常用于分析两样本的差异性,但该方法假设数据服从正态分布。通过实例,作者展示了当数据不满足正态分布时,T检验可能得出错误结论,即使数据明显不同,T检验的P值也可能显示无差异。文章以sin(x)为例,揭示了T检验的这一弊端,并预告将介绍T检验的改进方法。
摘要由CSDN通过智能技术生成

我最近在研究TCGA的RNAseq数据表达差异性的分析,常用的并且最简单的方法是统计量T检验。下面用一个例子来验证T检验的弊端问题所在。

两配对样本的T检验是利用来自两个总体的配对样本,推断总体的两个均值是否显著差异,从而推断两个总体是否存在差异。

前提,我们是假定总体是服从正态分布的, XN(u1,σ21)
原假设: H0:u1u2=0 ; 备择假设: H0:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值