小知识点系列(三) 本文(3万字) | PAN与代码复现 | Backbone之FPN与代码复现 | SPP / SPPF / SimSPPF / ASPP / RFB / SPPCSPC |

142 篇文章

已下架不支持订阅

本文详细介绍了PAN(Path Aggregation Network)、FPN(Feature Pyramid Network)以及SPP(Spatial Pyramid Pooling)的变种结构,包括SPPF、SimSPPF、ASPP、RFB和SPPCSPC等。通过代码复现和实验对比,阐述了这些结构在多尺度特征融合和目标检测中的应用和优势。PAN通过自下而上的路径增强特征信息,FPN则利用金字塔结构融合不同层次的特征,而SPP变种则通过空间金字塔池化来处理不同尺寸输入。文章还提供了相应的代码实现和实验结果,以帮助读者深入理解这些技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


点击进入专栏:
《人工智能专栏》 Python与Python | 机器学习 | 深度学习 | 目标检测 | YOLOv5及其改进 | YOLOv8及其改进 | 关键知识点 | 各种工具教程



PAN与代码复现

PAN全称Path Aggregation Network,是由Megvii在2018年提出的一种处理多尺度问题的方法。

PAN(Path Aggregation Network)是一个用于图像语义分割的深度神经网络架构。PAN的主要思路是通过聚合来自不同层级的特征图,使得每个特征图中的信息都可以被充分利用,从而提高检测精度。与FPN类似,PAN也是一种金字塔式的特征提取网络,但是它采用的是自下而上的特征传播方式。
  PAN的构建方式是从低分辨率的特征图开始向上采样,同时从高分辨率的特征图开始向下采样,将它们连接起来形成一条路径。在这个过程中,每一层特征图的信息都会与上下相邻层的特征图融合,但与FPN不同的是,PAN会将不同层级的特征

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小酒馆燃着灯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值