小知识点系列(三) 本文(3万字) | PAN与代码复现 | Backbone之FPN与代码复现 | SPP / SPPF / SimSPPF / ASPP / RFB / SPPCSPC |

142 篇文章

已下架不支持订阅

本文详细介绍了PAN(Path Aggregation Network)、FPN(Feature Pyramid Network)以及SPP(Spatial Pyramid Pooling)的变种结构,包括SPPF、SimSPPF、ASPP、RFB和SPPCSPC等。通过代码复现和实验对比,阐述了这些结构在多尺度特征融合和目标检测中的应用和优势。PAN通过自下而上的路径增强特征信息,FPN则利用金字塔结构融合不同层次的特征,而SPP变种则通过空间金字塔池化来处理不同尺寸输入。文章还提供了相应的代码实现和实验结果,以帮助读者深入理解这些技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


点击进入专栏:
《人工智能专栏》 Python与Python | 机器学习 | 深度学习 | 目标检测 | YOLOv5及其改进 | YOLOv8及其改进 | 关键知识点 | 各种工具教程



PAN与代码复现

PAN全称Path Aggregation Network,是由Megvii在2018年提出的一种处理多尺度问题的方法。

PAN(Path Aggregation Network)是一个用于图像语义分割的深度神经网络架构。PAN的主要思路是通过聚合来自不同层级的特征图,使得每个特征图中的信息都可以被充分利用,从而提高检测精度。与FPN类似,PAN也是一种金字塔式的特征提取网络,但是它采用的是自下而上的特征传播方式。
  PAN的构建方式是从低分辨率的特征图开始向上采样,同时从高分辨率的特征图开始向下采样,将它们连接起来形成一条路径。在这个过程中,每一层特征图的信息都会与上下相邻层的特征图融合,但与FPN不同的是,PAN会将不同层级的特征图融合后的结果进行加和,而不是级联。这样可以避免在级联过程中信息的损失,同时还可以保留更多的细节信息,从而提高检测精度。
  在PAN中,网络的主干部分通常采用

已下架不支持订阅

### CSP-Darknet53 Neck 结构 在YOLOv5架构中,Neck部分起到了连接Backbone和Head的关键作用。具体来说,在CSP-Darknet53作为Backbone的情况下,Neck采用了SPPF(Spatial Pyramid Pooling - Fast)模块来增强特征表达能力[^1]。 #### SPPF 模块详解 SPPF是一种改进版的空间金塔池化技术,旨在加速原始SPP操作并减少参数数量。其核心思想是在不同尺度上对输入特征图进行最大池化处理,并将这些多尺度特征融合在一起形成更丰富的上下文表示。这种机制有助于捕捉目标的不同尺寸信息,从而提高检测精度。 ```python import torch.nn as nn class SPPF(nn.Module): def __init__(in_channels, out_channels): super(SPPF, self).__init__() self.conv1 = Conv(in_channels, out_channels) self.maxpool_s1 = nn.MaxPool2d(kernel_size=5, stride=1, padding=2) self.maxpool_s2 = nn.MaxPool2d(kernel_size=9, stride=1, padding=4) self.maxpool_s3 = nn.MaxPool2d(kernel_size=13, stride=1, padding=6) def forward(x): x = self.conv1(x) sppf_1 = self.maxpool_s1(x) sppf_2 = self.maxpool_s2(sppf_1) sppf_3 = self.maxpool_s3(sppf_2) return torch.cat([x, sppf_1, sppf_2, sppf_3], dim=1) ``` ### 新的 CSP-PAN Head 架构解析 对于Head部分,则引入了全新的CSP-PAN结构用于预测层的设计。PANet(Path Aggregation Network)原本是为了改善FPN(Feature Pyramid Networks)而提出的路径聚合网络,它能够更好地传递低级到高级的信息流。在此基础上加入CSP设计理念后的版本不仅继承了上述优点,还进一步降低了计算成本,提升了模型效率[^2]。 ```python from yolov3_head import YOLOv3PredictionLayer # 假设这是Yolov3实现文件 def build_csp_pan_backbone(): csp_darknet53_neck_with_spff = ... # 定义上面提到过的Neck class CSP_PAN_Hybrid(YOLOv3PredictionLayer): def __init__(): super().__init__() # 这里省略了一些初始化细节 def forward(features_from_neck): p3_out, p4_out, p5_out = features_from_neck # 实现具体的PAN逻辑... return predictions_at_multiple_levels return CSP_Darknet53_Neck(csp_darknet53_neck_with_spff), CSP_PAN_Hybrid() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小酒馆燃着灯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值