西 南 石 油 大 学 实 验 报 告
课 程 | 物理实验 | 实验项目 | 单摆测定重力加速度 | 成 绩 | ||||
专业班级 | 学 号 | 指导教师 | ||||||
姓 名 | 实验日期 | |||||||
- 实验目的:
1、掌握单摆测重力加速度的基本原理
2、掌握作图法或最小二乘法
3、分析摆长和摆角对测量结果的影响
4、熟悉Phyphox、Tracker等相应软件的使用
(二)实验内容:
1、根据相对不确定度不大于5%的要求确定摆长和测量的周期数。
2、测量小角度摆动下单摆的周期(要求用Tracker、Phyphox等软件进行测量)。
3、利用作图法或最小二乘法,根据T2-L关系计算重力加速度,并分析其不确定度。
查阅实验所在地重力加速度,计算百分误差,分析误差原因。
4、研究不同摆长或不同摆角对实验结果的影响。摆长和摆角同学们可以只选择一个进行研究,每种情况至少研究3个及以上变化值,得出结论并简要叙述规律。
(三)实验原理:
- 摆角,忽略摆球形状、摆球质量、空气影响时的周期:
当偏角很小的时候,单摆做简谐运动,有由公式T=2πLg 可得重力加速度g =4π2LT2
T=2πLg
图1 单摆示意图
2、大摆角,忽略摆球形状和质量、空气影响时的周期:
T=2πLg1+14sin2θm2+⋯
(四)实验设备:
轻质细绳、装有phyphox的手机、刻度尺。
(五)实验步骤:
1、将细绳一端固定在竖直墙面上,另一端固定在手机上,让手机面与墙面平
行,做成一个摆。
2、打开phyphox软件,下拉菜单找到“力”下的“摆”,让手机偏离平衡位置-一个小角度,点击运行按钮,放手后,软件会根据陀螺仪测量的数据自动记录单摆的周期和频率。
3、利用作图法或最小二乘法,根据T2-L关系计算重力加速度,并分析其不确定度。
4、查阅成都的重力加速度,计算百分误差。
5、改变角度的大小即改变单摆的周期,按照如上步骤多次进行测量,并记录
数据。
(六)注意事项:
1、摆动时摆角不宜过大;
2、摆线要细而且无弹性,悬点要固定;
3、单摆要在竖直平面内移动,不能形成锥摆;
4、测摆长在单摆竖直悬挂状态;
5、测单摆周期时,在摆球经过平衡位置时开始计数。
(七)实验数据记录与处理:
1、数据表格:
序号 | 1 | 2 | 3 | 4 | 5 |
周期T(s) | 1.52 | 1.49 | 1.50 | 1.51 | 1.53 |
T2 | 2.31 | 2.22 | 2.25 | 2.28 | 2.34 |
摆长L(cm) | 55.6 | ||||
重力加速度g(m/s2 | 9.50 | 9.86 | 9.72 | 9.63 | 9.38 |
经查阅,成都的重力加速度为9.7913。
2、数据处理:
1)对于周期T:
周期T的平均值:T=1ni=1nTi=1.51s;
A类不确定度:UCT=i=1n(Ti-T)2n(n-1)=i=15(Ti-1.51)25×4
≈0.08;
B类不确定度:UBT=i=1k(△xmi(T)3)2=(0.013)2
≈0.006;
周期T的标准不确定度:UCT=UA2T+UB2(T)=(0.08)2+(0.006)2
≈0.09;
所以周期T=T+UCT
=1.51±
0.09 (s)
2)对于重力加速度g的不确定度分析:
根据公式g =4π2LT2;
间接测量量g的平均值:g=1ni=1ngi=9.618≈9.6 ms2;
间接测量量g的标准不确定度为:UCg=∂f∂LUL2=0.67≈0.7
故重力加速度g=9.6±0.7(ms2);
(八)结论及结果的分析讨论(实验误差分析)
1、结论及结果:
1)通过正常的实验流程并通过公式计算得到的g=9.6±0.7(ms2)
,而通过上网查询的成都本地的重力加速度为9.7913(ms2)
。
百分误差约为19.54%;
2)改变单摆的摆角,经过测量和计算,单摆的周期会随着其摆角的改变而改变;当摆角小于5度时,摆球到达最低点的速度较小,空气阻力较小,满足相关公式,得出的重力加速度误差较小;当摆角较大时,速度较大,空气阻力不能忽略,得出的结果误差较大。
2、误差分析:
1)毫米刻度尺的精度引起的误差;
2)将细线缠绕手机的方案代替用细线连接小球,小球的质心在其几何中心,而手机的质心很难确定,整个系统的质心上移,导致L测>L实,其中L测
指测量得到的L,L实
指细线末端到手机质心的距离;
3)将细线缠绕手机,必定在细线和手机的连接处产生空隙,使用刻度尺在这测量的误差进一步加大;
4)由于手机的质量分布不像小球那样均匀,体积也并非球形,其产生的空气阻力不可忽略不计;
5)其余因为不熟悉操作流程导致操作失误的偶然误差。