用腾讯股票数据源更新qlib日K数据

该代码段实现从腾讯接口获取指定股票的历史数据,支持日间和分钟级别数据,并进行必要的数据清洗和格式转换,最终得到可用于分析的DataFrame。处理步骤包括URL构造、数据解码、日期格式化及数值类型转换等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


def remote_source_tencent(symbol: str, interval: str, start_datetime: pd.Timestamp, end_datetime: pd.Timestamp):
    qtype = "day" if "d" in interval else interval
    interval = "day" if "d" in interval else interval
    codes = symbol.split(".",1)
    txsymbol=("sh" if codes[1] == "ss" else codes[1]) + codes[0]

    url = 'http://web.ifzq.gtimg.cn/appstock/app/fqkline/get?_var=kline_%sqfq&param=%s,%s,%s,%s,%s,qfq&r=0.%s'
    url = url % (interval, txsymbol, interval, start_datetime.date(), end_datetime.date(), 640, _random())

    content = urlopen(url).read().decode()
    content = content.split('=', maxsplit=1)[-1]
    content = json.loads(content)
    data = content['data'][txsymbol]
    if interval in data:
        data = data[qtype]
    elif 'qfq' + qtype in data:
        data = data['qfq'+qtype]
    else:
        raise ValueError('已知的key在dict中均不存在,请检查数据')

    df = pd.DataFrame(data)
    if len(data) <= 0:
        return df
    df.rename(columns={0:"date",1:"open",2:"close",3:"high",4:"low",5:"volume"},inplace=True)
    df[['open','close','low','high']]=df[['open','close','low','high']].astype('float')
    df[['volume']]=df[['volume']].astype('float').round(0).astype(int)
    df['date']=df['date'].apply(lambda x: datetime.datetime.date(datetime.datetime.strptime(x,'%Y-%m-%d')))
    df['volume']*=100
    df.loc[:,'adjclose']=df["close"]
    df.loc[:,'symbol']=symbol
    df.set_index(['symbol','date'],inplace=True)
    return df

<think>嗯,用户想了解如何安装和使用Tushare Qlib插件进行量化交易的数据分析。首先,我需要确认Tushare和Qlib各自的作用以及它们如何结合使用。Tushare是一个金融数据接口,可以获取股票等市场数据,而Qlib是微软开发的量化投资平台,用于数据处理、模型训练和回测。所以Tushare Qlib插件应该是将Tushare的数据接入到Qlib框架中的工具。 接下来,安装步骤。用户可能对Python环境有一定了解,但需要确保他们安装了正确的库。首先,安装Tushare和Qlib的基础包,使用pip命令。然后,可能需要安装Tushare的Qlib插件,这个可能需要从GitHub克隆仓库或者通过其他方式安装。需要注意的是,有时候这些插件可能不在PyPI上,所以用户可能需要通过源码安装。 安装完成后,用户需要配置Tushare的token,这需要注册Tushare账号获取。配置部分需要指导用户如何设置环境变量或者代码中直接设置token。这部分可能会有常见问题,比如token未设置导致的数据获取失败。 然后是数据获取的步骤,Qlib的工作流程通常包括数据收集、特征工程、模型训练、回测等。用户需要了解如何使用Tushare的数据替换或补充Qlib默认的数据源。可能需要编写自定义的数据加载器或适配器,将Tushare的数据转换成Qlib所需的格式,比如按期和股票代码组织的CSV文件,并存储在特定的目录结构下。 示例部分需要具体展示如何用代码实现数据获取、特征创建、模型训练和回测。这里需要注意Qlib的API调用方式,以及如何整合Tushare的数据。可能需要使用Qlib的DataHandler来加载自定义数据,并配置模型参数,比如使用LightGBM模型进行预测。 相关问题部分需要考虑用户可能遇到的后续问题,比如数据更新、性能优化、特征工程的方法,以及与其他数据源的对比。这些问题可以帮助用户深入理解整个流程,并解决实际应用中可能遇到的挑战。 需要检查是否有遗漏的步骤,比如环境配置中的权限问题,或者数据存储路径的正确性。此外,确保代码示例的正确性,避免语法错误,并提醒用户注意依赖库的版本兼容性,比如Tushare和Qlib的版本是否匹配。 最后,确保回答结构清晰,分步骤讲解,让用户能够逐步跟随操作。同时,引用必要的文档或资源,帮助用户进一步查阅官方资料。例如,Tushare的API文档和Qlib的GitHub仓库可能会有更详细的说明,需要引导用户参考这些资料以解决更具体的问题。</think># Tushare Qlib插件安装与使用教程 ## 一、环境准备 1. 安装Python 3.7+环境 2. 执行以下命令安装基础依赖: ```bash pip install tushare qlib pandas numpy ``` 3. 安装Tushare Qlib插件: ```bash git clone https://github.com/microsoft/qlib cd qlib/scripts python install_tushare.py ``` ## 二、配置Tushare API 1. 注册Tushare账号获取token[^1] 2. 设置环境变量: ```python import tushare as ts ts.set_token('your_token_here') # 替换为实际token ``` ## 三、数据获取与处理 ```python from qlib.data import D from tushare_data import TushareDataHandler # 初始化数据源 D.register_data_handler(TushareDataHandler) # 获取沪深300成分股数据 instruments = D.list_instruments(D.instrumetns("SH600000")) ``` ## 四、特征工程示例 ```python # 创建特征表达式 fields = [ "($close/$pre_close - 1) AS ret", # 收益率 "$volume/MEAN($volume, 20) AS vol_ratio" # 量比 ] ``` ## 五、模型训练与回测 ```python from qlib.contrib.strategy import TopkDropoutStrategy # 配置回测参数 strategy_config = { "topk": 50, "n_drop": 5, "signal": "pred_score" } # 执行回测 strategy = TopkDropoutStrategy(**strategy_config) report_dict = strategy.backtest() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值