一.尺度空间构造
SIFT&SURF尺度空间构造:
SIFT:Filter大小的不变,σ增大。其中降采样使减小图像大小,构造尺度空间。
SURF:图像大小不变,改变Filter大小,构造尺度空间。
首先计算高斯函数(Filter)与图像卷积的卷积,然后求每个像素点的二阶微分和偏微分,得到Hessian矩阵。(利用Hessian矩阵行列式det(H)可以判断邻域极值点。即:H为正定、负定、不定矩阵==>点(x, y)为极小、极大、非极值点。其中,det(H)>0,极值点。det(H)<0,非极值点。)
卷积和求微分可以交换,即先计算高斯函数的二阶微分得到模板(Filter)金字塔,再利用其卷积图像。
重要的是:高斯二阶微分模板又可以利用盒式滤波器等价。即:
左侧二图为高斯二阶微分模板,右侧二图为何时滤波器等价。虽然其中有误差,但这样的计算可以大大加速运算。
最后计算Hessian矩阵的行