SURF—点局部特征原理

本文详细介绍了SURF算法的尺度空间构造,包括如何利用高斯二阶微分模板和盒式滤波器等价来加速运算。接着阐述了找极值的过程,使用3D非极大值抑制和亚像素定位。最后讨论了描述子的构建,通过兴趣点赋方向和Haar小波模板确定关键点的64维描述子。SURF算法相比SIFT在速度和简化运算上有所优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.尺度空间构造

SIFT&SURF尺度空间构造:
SIFT&SURF尺度空间构造
SIFT:Filter大小的不变,σ增大。其中降采样使减小图像大小,构造尺度空间。
SURF:图像大小不变,改变Filter大小,构造尺度空间。
首先计算高斯函数(Filter)与图像卷积的卷积,然后求每个像素点的二阶微分和偏微分,得到Hessian矩阵。(利用Hessian矩阵行列式det(H)可以判断邻域极值点。即:H为正定、负定、不定矩阵==>点(x, y)为极小、极大、非极值点。其中,det(H)>0,极值点。det(H)<0,非极值点。)
卷积和求微分可以交换,即先计算高斯函数的二阶微分得到模板(Filter)金字塔,再利用其卷积图像。
在这里插入图片描述
重要的是:高斯二阶微分模板又可以利用盒式滤波器等价。即:
在这里插入图片描述
左侧二图为高斯二阶微分模板,右侧二图为何时滤波器等价。虽然其中有误差,但这样的计算可以大大加速运算。
最后计算Hessian矩阵的行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值