ORB—点局部特征原理

ORB(Oriented FAST and Rotated BRIEF)是一种结合了Fast角点检测和Brief描述子的计算机视觉特征检测算法。Fast通过比较像素点与其邻域像素的差异来寻找角点,并通过非极大值抑制确定最终角点。Brief则采用二进制编码生成特征描述子,通过随机点对比较实现描述子的创建。ORB在此基础上增加了尺度不变性和方向性,使得特征更稳定。ORB特征广泛应用于图像匹配和识别等领域。
摘要由CSDN通过智能技术生成

一. Fast(特征检测)

若某像素与其周围邻域内足够多的像素点相差较大,则该像素可能是角点。请添加图片描述
1.取半径为3的邻域16个点,计算|p0 - pi|(i = 1, 9, 5, 13),如果至少3个超过阈值,则当做候选角点。再进行下一步考察;否则,不可能是角点。
2.选取候选点p0,则计算p1到p16这16个点与中心p0的像素差,若它们有至少连续9个超过阈值,则是角点;否则,不可能是角点。(称为FAST-9)
:非极大值抑制。判断以特征点p为中心的一个邻域内,若存在多个特征点,则判断每个特征点的s值(s=Σ|p0 - pi| (i =1, 2,…16)),若p是邻域所有特征点中响应值最大的,则保留;否则,抑制。若邻域内只有一个特征点(角点),则保留。

二. Brief(特征描述)

Brief是一种二进制编码的描述子,其摈弃了利用区域灰度直方图描述特征点的传统方法,加速了描述子建立和后期匹配。
1.首先为防止噪声干扰,对图像进行高斯模糊。
2.选取SxS的邻域经行随机选N对点对。比较两点所在5x5子窗口的像素和大小(或者该点像素值大小,两种方法),并以此进行二值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值