- 博客(17)
- 资源 (1)
- 收藏
- 关注
原创 Leetcode-- ZigZag Conversion
一道找规律题目: 对于完整的每一列,对应两个数之间的间隔是2*(numRow-2)+2 = 2*numRows-2 对于一列只有一个数据的列,考虑它与前面同行的完整列中的索引差值应该是(numRows-1-row)*2 但注意,只有完整列存在的情况下,后面单独数字列才可能存在。图片来自:http://www.cnblogs.com/TenosDoIt/p/3738693.htmlclass S
2016-10-11 10:47:30
369
原创 kaggle可视化教程翻译
原文链接:点击打开链接这里的数据集是iris,python自带的有。# encoding=utf-8import pandas as pdimport warningswarnings.filterwarnings('ignore')import matplotlib.pyplot as pltimport seaborn as snsimport timesns.set(styl
2016-10-02 18:27:59
2132
原创 Stanford 机器学习-Recommender Systems
16.2 Content Based Recommendations基于内容的推荐是一只所有电影的特征值,图中x(i)x^{(i)}电影i的特征向量,表示第i个电影中每个特征在电影中占的比重。θ(j)\theta^{(j)}用户的parameter vector,表示用户对各个种类(特征)电影的喜爱程度。基于内容的推荐就是已知各个内容的特征,已知用户对部分电影的评分,求出θ(j)\theta^{(j
2016-05-12 17:02:38
553
原创 Stanford 机器学习 Anomaly Detection
Anomaly Dectection 检测异常点,通过判断该点出现的概率,如果概率较小,就判断为异常点,否则为正常点。 高斯分布,均值和方差这两个参数的估计,在实际情况下,分子为m或者m-1差别不大。 如何分配训练集和测试集。 对于算法的评估,如果anomalous点较少时,应该如何评估。 Anomaly Dection和Supervised learning的区别: 异
2016-05-11 20:59:35
776
原创 Stanford 机器学习 Dimensionality Reduction
14.3 Principal Component Analysis Problem Formulation 我们想要找到的向量是一个向量,并且原样本点到投影后的样本点的距离之和最小。 等价于,使得投影后样本点的方差最大化。 将3-d转到2-d时,应该找到两个向量表示这个投影的平面。 线性回归和PCA的差别,线性回归优化的是预测值和真实值的距离,而PCA优化的目标是到投影点的距离,并且
2016-05-11 19:03:58
615
原创 Stanford 机器学习-clustering
clustering13.2 K-Means Algorithm 输入K和训练集,K代表聚类后的cluster数目。 μi\mu_{i} 是指第i个聚类中心点,首先随机指定k个聚类的中心。 第一步:对于每个点,选取离这个点最近的中心为该点的分类。 第二步:根据分类后的结果,进行聚类中心μi\mu_{i} 的更新13.3 Optimization Objective 从公式可以看出优化目
2016-05-09 16:27:41
918
原创 learning bash-chap 01
第一章 bash基础cd - 改变到前一个工做目录文件名、通配符和路径名扩展?匹配单个字符 *任意字符字符串 [set] set中任意字符 [!set]不在set中任意字符大括号扩展可选前缀+{}+可选后缀 eg : b{ed, ar}s标准I/O常用UNIX数据过滤功能 cat - 将输入复制到输出 grep - 在输入中检索字符串 sort - 在输入中将行排序 cut -从输入
2016-04-14 00:15:20
342
原创 Stanford 机器学习-Advice for Applying Machine Learing
Deciding What to Try Next当用算法实现预测功能但是效果不是很好时的解决办法如下: Evaluating a Hypothesis线性回归计算J(θ\theta)的公式 逻辑回归分类时计算J(θ\theta)的公式,以及error计算公式 Model Selection and Train_Validation_Test Sets将所有数据按%60,%20,%20分为
2016-04-07 14:57:21
1294
原创 Stanford 机器学习-Neural Networks learning
1. Cost Function字母含义: nln_l表示网络的层数 LlL_l表示第l层 W(l)ijW_{ij}^{(l)}表示第l层第j单元到第l+1层第i个单元之间的连接参数 b(l)ib^{(l)}_i表示是第l+1层第i单元的偏置项 a(l)ia^{(l)}_i表示是第l层第i单元的激活值(输出值) z(l)iz^{(l)}_i第l层i单元输入加权和(包括偏置单元) SlS
2016-04-06 10:49:36
1020
原创 机器学习实战-第四章贝叶斯分类-代码理解-读书笔记
#coding:utf-8from numpy import *import pdbdef load_data_set(): word_list = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to',
2016-03-15 19:31:48
1999
原创 机器学习实战-第三章决策树-代码理解-读书笔记
#coding:utf-8from math import logimport operator#计算dataSet的熵def calcShannonEnt(dataSet): numEntries = len(dataSet) lableCounts = {} #首先要找到所有的分类结果,以及每个结果出现的次数 for featVec in dat
2016-03-14 18:25:36
3330
原创 数据结构_图_prim最小生成树算法
#include#include#include#include#define MAX_VERTEX_NUM 20typedef enum{DG, DN, UDG, UDN} GraphKind;typedef int VRType; //边的信息typedef char VertexType; //顶点的信息typedef struct ArcCell{ VRType a
2013-06-19 13:24:12
693
原创 图的邻接矩阵实现拓扑排序
#include#include#include#include#define STACK_INIT_SIZE 10 #define STACK_INCREMENT 2 typedef int Status;#define INFINITY INT_MAXtypedef int VRType;#define MAX_VERTEX_NUM 26enum GraphHand{DG
2013-05-27 23:22:04
1960
原创 数据结构_查找_平衡二叉树_插入
平衡二叉树(Balanced Binary Tree)又被称为AVL树(有别于AVL算法),且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。整篇文章基于自己对代码的理解,如果有错误希望大家不吝赐教,同时希望看到的人给点意见!刚开始写博客,希望自己能坚持下来。谢谢大家!给出几个概念:bf :即平衡因子,bf=左子树的高度减去右
2013-05-21 13:07:24
2099
原创 数据结构_查找_动态查找表_二叉排序树
定义:二叉排序树(Binary Sort Tree)又称二叉查找树。 它或者是一棵空树;或者是具有下列性质的二叉树: (1)若左子树不空,则左子树上所有结点的值均小于它的根结点的值;(2)若右子树不空,则右子树上所有结点的值均大于它的根结点的值;(3)左、右子树也分别为二叉排序树;下面代码中主要实现了二叉树的插入,删除,查找三个功能;具体的实现有注释,如果有错误或者您不理解
2013-05-16 16:10:33
848
原创 数据结构_查找_次优查找树
学习第九章查找的时候,看到了次优查找树。次优查找树的用途是什么呢? 若对有序表的查找是在等概率的条件下进行的,则在查找过程中可以使用二分查找(折半查找),其性能最优。如果在不等概率的条件下进行查找呢?这时候折半查找的效率就不一定是最高的,因此可以构造一种二叉树使得其查找效率最高。称为静态最优查找树(Static Optimal Search Tree),但构造最优查找树花费的时间
2013-05-15 16:16:05
1713
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人