SC3

SC3是一种用于单细胞RNA测序数据的共识聚类方法,包括基因过滤、多种距离计算、转换操作、k-means聚类和共识矩阵构建。通过兰德指数和调整兰德指数等评价指标评估聚类效果。
摘要由CSDN通过智能技术生成

sc3: consensus clustering of single-cell rna-seq data

Overview of clustering with SC3
SC3主要步骤:
(1)Gene filter:过滤掉rare genes 和 普遍存在的genes。
(2)Distance calculations:分别用Euclidean, Pearson and Spearman metrics构建距离矩阵。实验发现dropout对距离的计算没有影响。(1x3个矩阵)
(3)Transformations:分别用PCA和计算相关图拉普拉斯变换的特征向量进行transformation,并按特征值升序排序。(3x2个矩阵)
(4)k-means:对前d个特向量进行k-means聚类。
(5)Consensus clustering:用the cluster-based similarity partitioning algorithm (CSPA)计算consensus矩阵。每个聚类结果,生成binary相似矩阵,两个cell属于相同簇则相似性为1,否则为0。平均所有的相似性矩阵作为consensus matrix

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值