sc3: consensus clustering of single-cell rna-seq data
SC3主要步骤:
(1)Gene filter:过滤掉rare genes 和 普遍存在的genes。
(2)Distance calculations:分别用Euclidean, Pearson and Spearman metrics构建距离矩阵。实验发现dropout对距离的计算没有影响。(1x3个矩阵)
(3)Transformations:分别用PCA和计算相关图拉普拉斯变换的特征向量进行transformation,并按特征值升序排序。(3x2个矩阵)
(4)k-means:对前d个特向量进行k-means聚类。
(5)Consensus clustering:用the cluster-based similarity partitioning algorithm (CSPA)计算consensus矩阵。每个聚类结果,生成binary相似矩阵,两个cell属于相同簇则相似性为1,否则为0。平均所有的相似性矩阵作为consensus matrix