单细胞转录组聚类分析R包——SC3的应用

本文介绍了如何使用R包SC3进行单细胞转录组聚类分析,重点讨论了SC3如何通过一致方法确定高精度的聚类数目。SC3是一种针对单细胞RNA-seq数据的无监督聚类工具,基于随机矩阵理论(RMT)选择最佳聚类数量。文章详细阐述了安装SC3包的步骤以及如何应用该包来估计聚类数目,并展示了PCA结果和一致性矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

在做单细胞相关聚类分析的过程中,为了研究异质性,发现了一种专门用于单细胞转录组的聚类分析R包——SC3(single cell consensus clustering,单细胞一致性聚类)。该聚类算法发表于Nature Methods(2017),能够让单细胞RNA-seq基于转录组特征对细胞类型进行定量表征。这是一种用户友好的无监督聚类工具,它通过一致方法将多个聚类解决方案组合在一起,从而得到高精度和鲁棒性的分群结果。SC3包的官方具体使用教程见:http://www.bioconductor.org/packages/release/bioc/vignettes/SC3/inst/doc/SC3.html
SC3包源代码见Github:https://github.com/hemberg-lab/SC3

原文的SC3聚类流程如图所示:SC3聚类的一般流程
(a)使用SC3框架进行聚类的概述(参见方法)。用Treutlein数据举例说明了一致步骤。
(b)用于设置SC3参数的已发布数据集。N是数据集中的细胞数;k为作者最初确定的簇数;单位:RPKM是每千碱基每百万次读的转录本,RPM是每百万次读的转录本,FPKM是每千碱基每百万次读的转录本片段,TPM是每百万次读的转录本片段。
( c)ARI>处d值的直方图。金标准数据集达到95。黑色竖线表示细胞总数N的d = 4-7%,分类准确率高。
(d) (b)中所示数据集的SC3聚类的100个实现。条对应点的中位数。红色和灰色分别对应有一致步长和无一致步长时的聚类。这条黑线对应的ARI=0。8。黑色虚线分隔了金和银标准数据集。

笔者主要想通过该包对单细胞转录组进行聚类数目的估计。在网上没有直接写SC3关于这个功能的帖子,故我去原文,官方教程以及代码研究了一下,该包主要通过随机矩阵理论(Random Matrix Theory,RMT) 确定聚类的数目。

安装SC3包

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("SC3")

同时还需要安装如下包:

library(SingleCellExperiment)#安装方法和SC3一样
library
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值