随机重启爬山算法(Random-Restart Hill Climbing,RRHC)是爬山算法的一种改进策略,是一种启发式搜索算法,旨在通过随机重启来克服传统爬山算法容易陷入局部最优解的局限性,并增加找到全局最优解的概率。这种算法特别适合于解决优化问题,尤其是在解空间较大或者问题较为复杂时。
一、定义与原理
随机重启爬山算法通过在多次运行中不断尝试不同的初始解,并在每次运行中执行标准的爬山算法,最终选择所有运行中找到的最佳解作为最终结果。这种策略利用了多次尝试的机会,增加了跳出局部最优解并找到全局最优解的可能性。
前面说过的几种爬山法变体在选择下一步时的区别:
(1)爬山算法(Hill Climbing Algorithm,HCA)是在邻域内搜索最优解作为下一步方向;
(2)随机化爬山法(Stochastic Hill Climbing)是随机选择下一个移动的邻近解作为下一步方向;
(3)首次爬山法(First-Choice Hill Climbing)是选择第一个比当前解好的解作为下一步方向;
(4)最陡上升爬山法(Steepest-Ascent Hill Climbing)是邻域内搜索使目标函数值增长最快的解作为下一步方向;
(5)自适应爬山法(Adaptive Hill Climbing)是在搜索过程中动态调整参数以更好评判邻近解;
(6)概率爬山法(Probabilistic Hill Climbing)是以一定的概率选择最优解,同时以一定的概率接受非最优或甚至更差的邻近解作为下一步方向。
二、算法流程
随机重启爬山算法的基本流程如下:
(1)初始化:设置算法的最大重启次数和每次爬山算法的最大迭代次数。
(2)随机生成初始解:在解空间中随机选择一个初始解作为当前解。
(3)执行爬山算法:从当前解开始,执行标准的爬山算法,直到达到局部最优解或达到最大迭代次数。
(4)判断是否满足停止条件:检查是否达到最大重启次数,或者当前找到的最优解是否满足某种停止条件(如目标函数值达到预设阈值)。
(5)记录最优解:如果当前找到的最优解比之前记录的最优解更好,则更新最优解。
(6)重复:如果未达到最大重启次数,则回到步骤2,重新生成初始解并执行爬山算法。
(7)输出:输出所有运行中找到的最佳解作为最终结果。
算法流程图如下:
图1 随机重启爬山法流程图
三、随机重启爬山算法的关键参数
(1)最大重启次数(Maximum Restart Times)
定义:算法允许的最大重启次数,即算法尝试不同初始解并执行爬山算法的最大次数。
影响:该参数直接影响算法的搜索范围和计算复杂度。较大的重启次数增加了找到全局最优解的机会,但也会增加计算成本。较小的重启次数可能无法充分探索解空间,导致算法过早停止。
(2)每次爬山算法的最大迭代次数(Maximum Iterations per Hill Climbing)
定义:在每次重