个人windows电脑上安装DeepSeek大模型(完整详细可用教程)

在个人电脑上安装DeepSeek-R1-Distill-Qwen-1.5B-GGUF(0.5.7版本),需要满足一定的条件并做好相应的准备工作。以下是详细的安装流程、所需条件及准备工作:

一、所需条件

1.硬件要求:

处理器:较新的CPU,性能越好越能支持大型模型的运行。
内存:至少16GB,推荐24GB或更高以支持大型模型。
存储:足够的硬盘空间,通常要求至少5GB的空余空间用于安装和存储模型。
显卡:虽然不是必需,但有独立显卡可以加速部分计算任务。

2.软件要求:

操作系统:Windows或Mac OS,需要支持64位应用。
网络连接:稳定的网络连接用于下载模型和更新。

二、准备工作

备份数据:在安装之前,建议备份重要数据以防意外丢失。
检查系统兼容性:确保操作系统与DeepSeek-R1-Distill-Qwen-1.5B-GGUF兼容。
更新软件:将操作系统和常用软件更新到最新版本,以确保兼容性和稳定性。
具体可以查我的文章:https://lzm07.blog.csdn.net/article/details/145472256

三、详细安装流程(Windows系统)

1.下载Ollama安装包:

打开浏览器,访问Ollama官网,地址是:https://ollama.com/。
在这里插入图片描述

点击页面右上角的“Download”按钮。
在这里插入图片描述

根据Windows系统版本,如果是win10及以上版本,直接点击“Download for Windows”,之后会进入gitHub(最新版的下载网址是:github.com,gitHub是国外网站,访问会很慢),选择合适的安装包进行下载。建议复制网址,直接使用迅雷下载。也可以使用GitHub文件加速网站:https://github.moeyy.xyz/。
如果是针对当前教程的版本DeepSeek-R1-Distill-Qwen-1.5B-GGUF(0.5.7版本)的安装包OllamaSetup.exe,可以直接在我的CSDN上下载,网址如下:https://download.csdn.net/download/lzm12278828/90347211

2.安装Ollama:

下载完成后,双击安装包并按照提示完成安装。
在这里插入图片描述

注意:安装程序可能会直接将Ollama安装在C盘,且不支持更改路径,因此需要确保C盘有足够的空间。
在这里插入图片描述

3.验证安装:

打开命令提示符(可以通过按Win + R键,输入cmd后回车打开)。
输入命令ollama -v,如果安装正确,命令提示符将显示Ollama的版本号。
在这里插入图片描述

4.下载并运行DeepSeek模型:

(1)线上安装

以管理员身份运行命令提示符(可以通过右键点击命令提示符图标,选择“以管理员身份运行”)。
输入命令ollama run deepseek-r1-distill-qwen:1.5b-gguf,以下载并运行DeepSeek-R1-Distill-Qwen-1.5B-GGUF版本。如果是老版本是可以的,但如果是新版本,则可能无法下载。
在这里插入图片描述

等待模型下载并运行。下载时间取决于网络速度和模型大小。

(2)本地安装

1)GGUF文件下载

打开魔塔社区,网址是:https://www.modelscope.cn/models/unsloth/DeepSeek-R1-Distill-Qwen-1.5B-GGUF/files。我们看到有很多版本。先下载自己想要的版本。
在这里插入图片描述

当前我们下载了DeepSeek-R1-Distill-Qwen-1.5B-Q8_0.gguf,1.89GB大小的。将文件放在D盘根目录下。

2)创建Modelfile文件

在D盘根目录下创建一个名为Modelfile的文本文件(扩展名可以省略,可以先创建一个记事本文档,之后编辑好后将文件后缀删掉)。
在文件中写入以下内容,指定GGUF模型文件的路径:
FROM D:/DeepSeek-R1-Distill-Qwen-1.5B-Q8_0.gguf
如果文件不在同一目录下,需要使用绝对路径(当前也使用了绝对路径)。
在这里插入图片描述

3)创建Ollama模型

打开终端或命令行界面,由于Modelfile文件在D盘根目录下,所以要先进入D盘,运行以下命令来创建Ollama模型:
在这里插入图片描述

ollama create my_model_name -f Modelfile
其中my_model_name是你为模型指定的名称(可以自定义),-f选项后面跟的是Modelfile文件的路径。
看到success就表示模型创建成功了。

4)检查模型是否创建成功

运行以下命令来检查Ollama中是否已包含你创建的模型:ollama list。你应该能在列表中看到你的模型名称my_model_name。
在这里插入图片描述

5)运行模型

执行运行命令:一旦模型创建成功,你就可以使用以下命令来运行它:ollama run my_model_name。此时,Ollama将加载你指定的GGUF模型文件,并运行该模型。
验证模型运行:如果看到对话的输入提示>>>,说明GGUF格式的大模型在Ollama中安装成功并正在运行。你可以开始与模型进行交互,输入问题或指令,并查看模型的回答或输出结果。
在这里插入图片描述

5.开始与DeepSeek进行对话:

模型下载并运行后,命令提示符将显示>>>符号,表示可以开始与DeepSeek进行对话。
输入问题或指令,DeepSeek将给出相应的回答或执行相应的任务。
在这里插入图片描述

同时要注意以下问题:
(1)文件路径:确保Modelfile中指定的GGUF文件路径正确,否则模型无法正确加载。
(2)模型目录空间:确保Ollama的模型目录(默认为/usr/share/ollama/.ollama/models)有足够的空间。
(3)硬件限制:根据你的硬件配置选择合适的模型版本,例如显存较小的显卡可以选择低量化版本

四、详细安装流程(Mac系统)

1.下载Ollama安装包:

打开浏览器,访问Ollama官网。
点击页面右上角的“Download”按钮。
根据Mac系统版本,选择合适的安装包进行下载。

2.安装Ollama:

下载完成后,双击安装包并按照提示完成安装。

3.验证安装:

打开终端(可以通过按Command + 空格键,输入“终端”后回车打开)。
输入命令ollama -v,如果安装正确,终端将显示Ollama的版本号。

4.下载并运行DeepSeek模型:

输入命令ollama run deepseek-r1-distill-qwen:1.5b-gguf,以下载并运行DeepSeek-R1-Distill-Qwen-1.5B-GGUF版本。
等待模型下载并运行。

5.开始与DeepSeek进行对话:

模型下载并运行后,终端将显示>>>符号,表示可以开始与DeepSeek进行对话。

五、注意事项

(1)模型参数选择:DeepSeek支持多种模型参数,包括1.5B、7B等。参数越大,性能通常越好,但对硬件配置的要求也越高。请根据自己的硬件配置选择合适的参数。
(2)保存路径设置:DeepSeek模型下载后,默认会保存在系统盘(如C盘)。如果需要更改保存路径,可以在Ollama的配置文件中进行设置。
(3)第三方客户端软件:如果希望在图形界面下与DeepSeek进行交互,可以安装支持Ollama的第三方客户端软件,如ChatWise等。
通过以上步骤,您应该能够在个人电脑上成功安装并运行DeepSeek-R1-Distill-Qwen-1.5B-GGUF。如果遇到任何问题,请参考Ollama的官方文档或寻求社区的帮助。

<think>好的,用户想了解如何在电脑安装DeepSeek。首先,我需要明确DeepSeek具体指的是什么,因为可能有不同的产品使用这个名字。比如,可能是深度求索公司的人工智能相关软件,或者是某个开源项目。假设用户指的是深度求索的AI模型,那么安装步骤可能涉及环境配置、依赖安装模型下载等。 接下来,我需要考虑用户的操作系统。不同的系统(Windows、macOS、Linux)安装步骤可能不同。需要询问用户使用的系统,或者给出通用的方法。另外,用户是否有编程经验?如果是开发者,可能熟悉Python和Git,而普通用户可能需要更详细的指导。 然后,安装AI模型通常需要Python环境和必要的库,比如PyTorch或TensorFlow。需要指导用户安装Python、创建虚拟环境、安装依赖库,以及如何获取模型权重。此外,可能需要使用Git克隆代码仓库,或者通过Hugging Face等平台下载模型。 还要注意权限问题,比如是否需要管理员权限来安装软件。另外,硬件要求,比如是否有NVIDIA显卡支持CUDA加速,这会影响安装步骤和性能。 最后,需要验证安装是否成功,可能通过运行示例代码或命令行交互。如果有常见的错误,可以提前给出解决方案,比如依赖冲突、版本不兼容等。 总结步骤:确认DeepSeek具体产品,检查系统环境,安装Python和依赖,获取模型,配置环境,测试运行。需要分步骤详细说明,并提示可能的注意事项和问题排查方法。</think>以下是在电脑安装DeepSeek(假设指深度求索公司开源的大语言模型)的通用步骤,请根据实际情况调整: --- **安装前准备** 1. 操作系统:建议使用Linux/macOS(Windows需配置WSL) 2. 硬件要求: - 至少16GB内存 - 推荐NVIDIA显卡(支持CUDA加速) 3. 基础软件: - Python 3.8+ - pip包管理工具 - Git版本控制工具 **安装步骤** 1. 克隆代码仓库 ```bash git clone https://github.com/deepseek-ai/DeepSeek-LLM.git cd DeepSeek-LLM ``` 2. 创建虚拟环境(推荐) ```bash python -m venv deepseek-env source deepseek-env/bin/activate # Linux/macOS # 或 Windows: .\deepseek-env\Scripts\activate ``` 3. 安装依赖 ```bash pip install -r requirements.txt ``` 4. 安装PyTorch(根据CUDA版本选择) ```bash # 示例(CUDA 11.8) pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 ``` 5. 下载模型权重(需申请权限) - 访问官方Hugging Face仓库: https://huggingface.co/deepseek-ai - 按照要求完成模型使用申请 - 下载后放置到 `./model` 目录 6. 运行测试 ```bash python demo.py # 具体执行文件根据项目文档调整 ``` **常见问题处理** - CUDA不可用:检查显卡驱动和CUDA版本兼容性 - 内存不足:尝试较小参数的模型版本(如7B版本) - 权限问题:使用`sudo`(Linux/macOS)或以管理员身份运行(Windows) **注意事项** 1. 建议使用conda管理Python环境 2. 模型文件较大(数十GB),确保磁盘空间充足 3. 首次运行会自动下载分词器等组件,需保持网络畅通 如需安装其他DeepSeek产品(如API客户端),通常更简单: ```bash pip install deepseek-sdk ``` 建议访问官方文档获取最新指南: https://platform.deepseek.com/docs
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

搏博

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值