候鸟优化算法(Migrating Birds Optimization, MBO)作为一种新兴的元启发式算法,已经得到了广泛的关注和研究。为了进一步提高其性能,学者们提出了多种改进算法。
一、算法背景与原理
候鸟优化算法是2012年由土耳其学者Duman等提出的一种新的邻域搜索算法。该算法模拟候鸟在迁徙过程中保持V字形飞行编队,以减少能量损耗的过程来实现优化。候鸟迁徙是自然界中一种常见的现象,它们为了生存和繁衍,需要长距离飞行,并在飞行过程中保持一定的队形以节约能量。MBO算法正是基于这种自然现象,通过模拟候鸟的迁徙行为,来求解优化问题。
图1 候鸟迁徙编队飞行
相关详情可以看我的文章:路径规划之启发式算法之二十八:候鸟优化算法(Migrating Birds Optimization, MBO)-CSDN博客
二、MBO的主要组成部分包括以下几个关键阶段和要素
1.算法初始化
(1)鸟群数量设置:确定参与优化的鸟群数量,即解的数量。
(2)参数设置:设置算法运行所需的各种参数,如迭代次数、邻域解的数量等。
2.鸟群编队与个体表示
(1)V字形编队:算法模拟候鸟迁徙时的V字形飞行编队,领飞鸟位于队首,其余鸟(跟飞鸟)按照V字形排列。