候鸟优化算法(MBO)的原理以及改进方式

        候鸟优化算法(Migrating Birds Optimization, MBO)作为一种新兴的元启发式算法,已经得到了广泛的关注和研究。为了进一步提高其性能,学者们提出了多种改进算法。

一、算法背景与原理

        候鸟优化算法是2012年由土耳其学者Duman等提出的一种新的邻域搜索算法。该算法模拟候鸟在迁徙过程中保持V字形飞行编队,以减少能量损耗的过程来实现优化。候鸟迁徙是自然界中一种常见的现象,它们为了生存和繁衍,需要长距离飞行,并在飞行过程中保持一定的队形以节约能量。MBO算法正是基于这种自然现象,通过模拟候鸟的迁徙行为,来求解优化问题。

图1 候鸟迁徙编队飞行

        相关详情可以看我的文章:路径规划之启发式算法之二十八:候鸟优化算法(Migrating Birds Optimization, MBO)-CSDN博客

二、MBO的主要组成部分包括以下几个关键阶段和要素

1.算法初始化

        (1)鸟群数量设置:确定参与优化的鸟群数量,即解的数量。

        (2)参数设置:设置算法运行所需的各种参数,如迭代次数、邻域解的数量等。

2.鸟群编队与个体表示

        (1)V字形编队:算法模拟候鸟迁徙时的V字形飞行编队,领飞鸟位于队首,其余鸟(跟飞鸟)按照V字形排列。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

搏博

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值