苦难大叔
码龄4年
关注
提问 私信
  • 博客:127,901
    127,901
    总访问量
  • 14
    原创
  • 102,528
    排名
  • 65
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江西省
  • 加入CSDN时间: 2021-03-25
博客简介:

lzmxxh168的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    207
    当月
    4
个人成就
  • 获得97次点赞
  • 内容获得5次评论
  • 获得262次收藏
创作历程
  • 6篇
    2024年
  • 2篇
    2023年
  • 10篇
    2022年
成就勋章
TA的专栏
  • 深度学习
    5篇
  • 各类工具
    4篇
  • ENDNOTE
    1篇
  • python
  • 目标跟踪
兴趣领域 设置
  • Python
    python
  • 人工智能
    计算机视觉机器学习深度学习cnn目标跟踪视觉检测
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

183人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

商汤 目标跟踪 商汤目标跟踪算法

将模型下载下来,将里面的各个文件夹的model.pth文件,分别复制到pysot工程文件experiments对应的文件夹里。VOT2016和VOT2018数据集也需要有有类似的操作,将VOT2016.json和VOT2018.json文件打开后,分别对照自己的数据集看看,需要复制文件夹的复制,需要改名的直接改名即可。随着SIamFC,SiamRPN,DASiamRPN,SiamMask,SiamRPN++等等文章的涌现,Siam家族堪称经典,商汤科技在计算机视觉领域真滴强。第二天试了一下,迷之成功了。
原创
发布博客 2024.07.27 ·
902 阅读 ·
22 点赞 ·
0 评论 ·
5 收藏

目标跟踪算法小结

在目标跟踪领域中,基于Boosting跟踪的算法具有较强的判别学习能力,能够自适应选择区分性较强的特征,完成跟踪任务,但是该类算法没有考虑目标特征间的关联性,从而导致信息的冗余;徐俊格等[ ]提出了一种结合SVM和加权Meanshift的目标跟踪算法,使用颜色特征的SVM分类器对像素点进行分类,再结合对前景目标和背景特征赋予不同权值的Meanshift算法,突出前景特征,降低背景噪声对目标的干扰,实现了复杂场景下的目标跟踪。该算法的优点是,当目标为非刚体时,目标跟踪也有很好的效果。
原创
发布博客 2024.07.27 ·
744 阅读 ·
11 点赞 ·
0 评论 ·
16 收藏

90+目标跟踪算法&9大benchmark!视觉目标跟踪:综述与展望(第二次阅读体会)

判别相关滤波器(DCF)是一种用于学习线性回归的监督技术。近年来,基于DCF的跟踪器在多个跟踪基准上表现出优异的性能,DCF成功的关键是通过循环移位训练样本实现的密集采样的计算效率近似,这允许在学习和应用相关滤波器时使用快速傅里叶变换(FFT)。通过利用傅里叶变换的特性,DCF在线学习相关滤波器,通过有效地最小化最小二乘输出误差来在连续帧中定位目标对象。为了估计下一帧中的目标位置,之后将学习滤波器应用于最大响应的目标位置的感兴趣区域。然后通过用该估计值注释新样本,以迭代方式更新过滤器。
原创
发布博客 2024.07.27 ·
747 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

轻量化目标跟踪

如图 5 所示,随着运行时间的增加,其他算法均出现了速度下降、电量下降,温度升高的现象,但本文的 FEAR-XS 在这些指标上均能保持稳定(高速、耗电少、温度低)。实验表明,LightTrack 与手工设计的 SOTA 跟踪器(如 SiamRPN++ 和 Ocean)相比,可以实现更优越的性能,而需要的计算量和参数要少得多。特征提取部分使用轻量的 FBNet,特征融合部分设计了像素级别的融合,如图 3 所示,这个和 PGNet,CGACD 等方法的操作是一样的。作者认为对于单目标跟踪,一个查询就足够了。
原创
发布博客 2024.06.30 ·
546 阅读 ·
4 点赞 ·
0 评论 ·
12 收藏

相关滤波和孪生网络目标跟踪综述(Martin 团队)

Visual Object Tracking with Discriminative Filters and Siamese Networks: A Survey and Outlook 马丁团队的新作,强烈推荐。精确和鲁棒的视觉目标跟踪是计算机视觉中最具挑战性和最基本的问题之一。它需要在只给定目标初始状态的条件下,准确估计图像序列中目标的轨迹及状态。相关滤波和孪生网络已经成为当下的主流跟踪算法,本文选取了 90 多个 DCF 和 Siamese 跟踪器进行系统和全面的回顾。
原创
发布博客 2024.06.30 ·
584 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

SE-ResNet-18轻量化的具体策略

**使用深度可分离卷积(Depthwise Separable Convolution)**:将标准卷积分解为深度卷积和逐点卷积(pointwise convolution),大幅减少参数和计算量。- **蒸馏学习(Distillation Learning)**:使用一个较大的“教师模型”训练一个较小的“学生模型”,将教师模型的知识传递给学生模型,以提升其性能。具体实施时,可根据实际需求和硬件条件,灵活选择并组合这些策略。- **减少SE模块中的参数**:例如,减少全连接层的大小,使用更少的神经元。
原创
发布博客 2024.06.25 ·
895 阅读 ·
8 点赞 ·
0 评论 ·
7 收藏

论文中的相关工作Related Work怎么写

相关工作要注重内在逻辑,切忌东一榔头西一棒槌地列出其他文献;它的作用在于二:一为读者展开项目背景,如同讲故事铺垫;二为展示自己工作与众不同之处,突出贡献。
原创
发布博客 2023.11.21 ·
3206 阅读 ·
8 点赞 ·
1 评论 ·
20 收藏

卷积神经网络之“浅层特征”与“深层特征”

2.这类研究思路的代表有两种:(1)feature不融合,多尺度的feture分别进行预测,然后对预测结果进行综合,如Single Shot MultiBox Detector (SSD) , Multi-scale CNN(MS-CNN)(2)feature进行金字塔融合,融合后进行预测,如Feature Pyramid Network(FPN)等。1.浅层特征:浅层网络提取的特征和输入比较近,包含更多的像素点的信息,一些细粒度的信息是图像的一些颜色、纹理、边缘、棱角信息。
原创
发布博客 2023.10.16 ·
2696 阅读 ·
9 点赞 ·
1 评论 ·
10 收藏

吴恩达:28张图全解深度学习知识

深度学习研究的一大突破是新型激活函数的出现,用 ReLU 函数替换sigmoid 函数可以在反向传播中保持快速的梯度下降过程,sigmoid 函数在正无穷处和负无穷处会出现趋于零的导数,这正是梯度消失导致训练缓慢甚至失败的主要原因。卷积核对应的检测特征可以从其参数分布简单地判断,例如,权重从左到右变小的卷积核可以检测到黑白竖条纹的边界,并显示为中间亮,两边暗的特征图,具体的相对亮暗结果取决于图像像素分布和卷积核的相对关系。此外,这种词表征的方法还能表示词的语义,因为词义相近的词在嵌入空间中距离相近。...
转载
发布博客 2022.09.01 ·
321 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

五个比SCI-Hub还牛的下载文献方法,教你全网免费下载外文文献。

搜索文献时,点Scientific articles,输入要查的文献名字,关键词或者doi号,doi号可以通过百度学术或谷歌学术查到。比如搜索cruise这个关键词,显示如下图:如右侧画红框的部分所示,这个网站集合了很多可以免费下载文献的网站综合体,第一个就是被科研工作者誉为草帽海贼团的Sci-Hub(),点进去之后,再点击下载就可以了。有的时候Sci-Hub没有你想要的文章,这时候你就可以点击别的网站进行下载。...
原创
发布博客 2022.09.01 ·
50754 阅读 ·
15 点赞 ·
0 评论 ·
135 收藏

PPT卡死了?只需要这几个小技巧,瞬间帮你提速!

打开PPT,一般都会先出现这个启动页,如果PPT启动时的加载项太多,就会在这个画面停留很久,直到把PPT附带的加载项全部启动了,才能进入到PPT软件中。因为90%以上PPT卡的原因,都是因为PPT的设置问题,而这些都是你自己的手做的,不让你背让谁背?可能是PPT内嵌了太多的字体文件,还有PPT中的高质量图片太多,所以让PPT的体积也跟着涨了。点击PPT选项卡上的文件,在弹出的小窗中找到加载项,点击下方的转到。小编汇总了一批PPT卡顿的问题,其中绝对有你遇到的那一个,所以赶紧的,去get下解决方法吧。...
原创
发布博客 2022.08.30 ·
59982 阅读 ·
6 点赞 ·
0 评论 ·
12 收藏

海选科研工具

荀子在《劝学篇》中讲到,”“。在生活中,善用各种工具能够极大的提高我们的效率,在科研工作中亦是如此。今天给大家介绍在科学研究和论文写作自己常用到的“”,有了它们,可以让你的科研工作事半功倍~做文献调研是一件相当痛苦的事情,因为既要做到,同时又要做到。在常用的文献数据库中逐个去进行检索显然是一件费力不讨好的事情。google scholar 搜索完美的解决了这个问题。要想写出好论文,首先得有好的idea。好的idea在很大程度上取决于你阅读量多少高质量的论文。...
原创
发布博客 2022.08.30 ·
2174 阅读 ·
1 点赞 ·
0 评论 ·
11 收藏

最好用AI抠图的软件,方便你,我,他。

盘点在线AI抠图软件,完全不需要任何PS基础,就是这么简单!!
原创
发布博客 2022.08.30 ·
818 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

传统手工特征方法

原文链接:https://blog.csdn.net/u013171226/article/details/113865307。版权声明:本文为CSDN博主「陈 洪 伟」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。1.几种手工特征方法提出时间。2.几种手工特征方法简单对比。3.每种方法的参考博客。...
转载
发布博客 2022.08.28 ·
230 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

综述:轻量级CNN架构设计

接下来我将结合自己看过的论文,还有这一年多的项目比赛经历谈一谈我所理解的图像分类和目标检测相关轻量级模型设计,本文思想还比较浅薄,主要是给自己的工作做个总结,有不正确的地方希望大家能共同讨论。设计之前通常我们都是基于已有的硬件架构去进行模型的部署,这个时候就需要确定这个架构下能部署什么算子,可以通过已有的接口自己拓展哪些算子,并且哪些算子不是很高效。...
转载
发布博客 2022.08.27 ·
1051 阅读 ·
4 点赞 ·
2 评论 ·
13 收藏

深度学习中的经典基础网络结构总结

在最开始,比如在 LeNet 那个年代,也就几层网络,当网络更深的时候便会出现精度不升反降的现象,后来我们知道是因为梯度下降导致学习率下降甚至停滞,而到了 VGG 和 GoogLeNet 的年代,我们有了 ReLU,有了更好的初始化方法,有了 BN,但是如下面第一幅图所示,当深度达到50多层时,问题又出现了了,所以激活函数或者初始化方法仅仅是缓解了梯度消失,让网络的深度从几层推移到了二十多层,而如何让网络更深,正是 ResNet 被提出的原因。这里所指的网络是可以作为 backbone 的基础网络结构。..
转载
发布博客 2022.08.27 ·
398 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

深度学习面试专用:深度学习500问;文字版吴恩达深度学习,机器学习

深度学习500问
原创
发布博客 2022.08.27 ·
1127 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

【ENDNOTE使用经验随谈】

ENDNOTE使用经验随谈
原创
发布博客 2022.08.25 ·
152 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多