要使SE-ResNet-18轻量化,可以采取以下策略:
1. 减少卷积层的参数
- **使用深度可分离卷积(Depthwise Separable Convolution)**:将标准卷积分解为深度卷积和逐点卷积(pointwise convolution),大幅减少参数和计算量。
- **减少卷积核数量**:在保持模型性能的前提下,适当减少每一层的卷积核数量。
2. 网络剪枝(Network Pruning)
- **权重剪枝(Weight Pruning)**:移除冗余和不重要的权重,减小模型规模。
- **结构剪枝(Structured Pruning)**:移除不重要的卷积核或整个卷积通道,减少计算开销。
3. 量化(Quantization)
- **权重量化(Weight Quantization)**:将模型权重从32位浮点数量化为8位甚至更低的整数,降低存储和计算复杂度。
- **激活量化(Activation Quantization)**:对激活值进行量化,进一步减少计算量。
4. 知识蒸馏(Knowledge Distillation)
- **蒸馏学习(Distillation Learning)**:使用一个较大的“教师模型”训练一个较小的“学生模型”,将教师模型的知识传递给学生模型,以提升其性能。
5. 高效SE模块设计
- **减少SE模块中的参数**:例如,减少全连接层的大小,使用更少的神经元。