简介
本文为目标跟踪算法调研总结。
注意: 可做分享,切勿在投稿论文中大段摘用(重复率会很高)。
1. 定义
目标跟踪是通过分析视频图片序列,对检测出的各个候选目标区域实施匹配,定位出这些目标在视频序列中的坐标。根据算法理论的不同,目标跟踪算法又可分为目标表观建模和跟踪策略两部分,其中目标表观建模又可分为生成式跟踪和判别式跟踪两个方面。本节将分别就这几个方面介绍目标跟踪算法的研究现状。
2. 算法
(1)目标表观建模
目标表观建模问题又称目标匹配问题,它是根据目标的表观特征来建立相应的表观模型,是跟踪算法中最为重要的模块。根据对目标表观的建模方式,可以将目标表观建模分为生成式跟踪和判别式跟踪。
a. 生成式模式
生成式跟踪算法不考虑背景信息,通过学习建立一个模型来表示目标,然后使用该模型直接与目标类别进行匹配,以达到跟踪的目的。生成式跟踪方式按照表观建模的建立形式的不同,可以分为基于核的算法、基于子空间的算法以及基于稀疏表示的算法[ ]。
基于核的跟踪算法首先对目标进行表观建模,进而确定相似性度量策略以实现对目标的定位。该算法的优点是,当目标为非刚体时,目标跟踪也有很好的效果。最典型的核跟踪算法是均值漂移(Meanshift)算法[ ],该算法本质上是基于梯度上升的局部寻优算法。由于Meanshift算法实现简单、速度较快,它在模式识别、数字图像处理和计算机视觉等领域均应用广泛。但是在目标跟踪时,Mea